The ‘‘passivated emitter and rear locally diffused’’ (PERL) silicon solar cell structure presently demonstrates the highest terrestrial performance of any silicon‐based solar cell. This paper presents a detailed investigation of the limiting loss mechanisms in PERL cells exhibiting independently confirmed 1‐sun efficiencies of up to 23.0%. Optical, resistive, and recombinative losses are all analyzed under the full range of solar cell operating conditions with the aid of two‐dimensional (2D) device simulations. The analysis is based on measurements of the reflectance, quantum efficiency, dark and illuminated current–voltage (IV) characteristics, and properties of the Si–SiO2 interfaces employed on these cells for surface passivation. Through the use of the 2D simulations, particular attention has been paid to the magnitudes of the spatially resolved recombination losses in these cells. It is shown that approximately 50% of the recombination losses at the 1‐sun maximum power point occur in the base of the cells, followed by recombination losses at the rear and front oxidized surfaces (25% and <25%, respectively). The relatively low fill factors of PERL cells are principally a result of resistive losses; however, the recombination behavior in the base and at the rear surface also contributes. This work predicts that the efficiency of 23% PERL cells could be increased by about 0.7% absolute if ohmic losses were eliminated, a further 1.1% absolute if there were no reflection losses at the nonmetallized front surface regions, about 2.0% by introducing ideal light trapping and eliminating shading losses due to the front metallization, and by about 3.7% absolute if the device had no defect‐related recombination losses. New design rules for future efficiency improvements, evident from this analysis, are also presented.

1.
A.
Wang
,
J.
Zhao
, and
M. A.
Green
,
J. Appl. Phys.
57
,
602
(
1990
).
2.
J.
Zhao
,
A.
Wang
, and
M. A.
Green
,
Prog. Photovoltaics
2
,
227
(
1994
).
3.
M. A.
Green
,
IEEE Trans. Electron Devices
31
,
671
(
1984
).
4.
M. A. Green, S. R. Wenham, and J. Zhao, Proceedings of the 11th European Photovoltaic Solar Energy Conference, Montreux, Switzerland (Har-wood Academic, Switzerland, 1992), p. 41.
5.
M. A. Green, High Efficiency Silicon Solar Cells (Trans Tech, Aedermannsdorf, Switzerland, 1987).
6.
S.
Kolodinski
,
J. H.
Werner
,
T.
Wittchen
, and
H. J.
Queisser
,
Appl. Phys. Lett.
63
,
2405
(
1993
).
7.
G.
Güttler
and
H. J.
Queisser
,
Energy Convers.
10
,
51
(
1970
).
8.
M.
Keevers
and
M. A.
Green
,
J. Appl. Phys.
75
,
4022
(
1994
).
9.
R.
Hulstrum
,
R.
Bird
, and
C.
Riordan
,
Sol. Cells
15
,
365
(
1985
).
10.
T.
Tiedje
,
E.
Yablonovitch
,
G. D.
Cody
, and
B. G.
Brooks
,
IEEE Trans. Electron Devices
31
,
711
(
1984
).
11.
S. Müller, K. Kells, J. Litsios, U. Krumbein, A. Schenk, and W. Fichtner, SIMUL User’s Manual (Integrated Systems Laboratory, ETH Zurich, Switzerland, 1992).
12.
A. G.
Aberle
,
G.
Heiser
, and
M. A.
Green
,
J. Appl. Phys.
75
,
5391
(
1994
).
13.
M. A.
Green
,
A. W.
Blakers
,
J.
Zhao
,
A. M.
Milne
,
A.
Wang
, and
X.
Dai
,
IEEE Trans. Electron Devices
37
,
331
(
1990
).
14.
A. G.
Aberle
,
S.
Glunz
, and
W.
Warta
,
J. Appl. Phys.
71
,
4422
(
1992
).
15.
A. G.
Aberle
,
S.
Glunz
, and
W.
Warta
,
Sol. Energy Mater. Solar Cells
29
,
175
(
1993
).
16.
A. G.
Aberle
,
S. W.
Glunz
,
A. W.
Stephens
, and
M. A.
Green
,
Prog. Photovoltaics
2
,
265
(
1994
).
17.
A.
Luque
and
I.
Tobias
,
J. Appl. Phys.
73
,
4042
(
1993
).
18.
A. B.
Sproul
and
M. A.
Green
,
J. Appl. Phys.
70
,
846
(
1991
).
19.
P. P. Altermatt, A. G. Aberle, G. Heiser, S. J. Robinson, A. Wang, J. Zhao, and M. A. Green (unpublished).
20.
P. A. Basore, Sandia National Labs, NM (private communication).
21.
M. A.
Green
,
J.
Zhao
,
A.
Wang
, and
S. R.
Wenham
,
IEEE Electron Device Lett.
13
,
317
(
1992
).
22.
P. A. Basore, Conference Rec. 23rd IEEE Photovoltaic Specialists Conference, Louisville KY (IEEE, New York, 1993), p. 147.
23.
A. G. Aberle, Ph.D. thesis. University of Freiburg, Germany, 1991.
24.
P.
Campbell
and
M. A.
Green
,
J. Appl. Phys.
62
,
243
(
1987
).
25.
P. A.
Basore
,
IEEE Trans. Electron Devices
37
,
337
(
1990
).
26.
P. Campbell, University of New South Wales (private communication).
27.
P. P. Altermatt, Diploma thesis, University of New South Wales and University of Konstanz, Germany, 1994.
28.
A. G. Aberle, S. R. Wenham, and M. A. Green, Conf. Rec. 23rd IEEE Photovoltaic Specialists Conference, Louisville, KY (IEEE, New York, 1993), p. 133.
29.
A. G.
Aberle
,
S. R.
Wenham
,
M. A.
Green
, and
G.
Heiser
,
Prog. Photovoltaics
2
,
3
(
1994
).
30.
A. G.
Aberle
,
G.
Heiser
, and
M. A.
Green
,
Sol. Energy Mater. Sol. Cells
34
,
149
(
1994
).
31.
M.
Wolf
and
H.
Rauschenbach
,
Adv. Energy Convers.
3
,
455
(
1963
).
32.
M. A. Green, Solar Cells (University of New South Wales, Kensington, Australia, 1982).
33.
G. Heiser and A. G. Aberle, 5th IEEE Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits (NUPAD), Honolulu, Hawaii, June 1994 (unpublished).
34.
S. R.
Wenham
,
Prog. Photovoltaics
1
,
3
(
1993
).
35.
H. S.
Bennett
and
C. L.
Wilson
,
J. Appl. Phys.
55
,
3582
(
1984
).
36.
J. A.
del Alamo
and
R. M.
Swanson
,
Jpn. J. Appl. Phys.
26
,
1860
(
1987
).
37.
R. R.
King
,
R. A.
Sinton
, and
R. M.
Swanson
,
IEEE Trans. Electron Devices
37
,
365
(
1990
).
38.
J. D.
Beck
and
A.
Conradt
,
Solid State Commun.
13
,
93
(
1973
).
39.
J.
Dziewior
and
W.
Schmid
,
Appl. Phys. Lett.
31
,
346
(
1977
).
40.
S. J.
Robinson
,
A. G.
Aberle
, and
M. A.
Green
,
IEEE Trans. Electron Devices
41
,
1556
(
1994
).
41.
S. W.
Glunz
,
A. B.
Sproul
,
W.
Warta
, and
W.
Wettling
,
J. Appl. Phys.
75
,
1611
(
1994
).
42.
A. W.
Stephens
,
A. G.
Aberle
, and
M. A.
Green
,
J. Appl. Phys.
76
,
363
(
1994
).
43.
S. J.
Robinson
,
A. G.
Aberle
, and
M. A.
Green
,
J. Appl. Phys.
76
,
7920
(
1994
).
44.
A. G.
Aberle
,
S. J.
Robinson
,
A.
Wang
,
J.
Zhao
,
S. R.
Wenham
, and
M. A.
Green
,
Prog. Photovoltaics
1
,
133
(
1993
).
45.
S. K.
Pang
,
A.
Rohatgi
,
B. L.
Sopori
, and
G.
Fiegl
,
J. Electrochem. Soc.
137
,
1977
(
1990
).
46.
D. Kendall, presented at the Physics and Application of Lithium-Diffused Silicon Conference, NASA Space Flight Center, 1969 (unpublished).
47.
J.
Zhao
and
M. A.
Green
,
IEEE Trans. Electron Devices
38
,
1925
(
1991
).
48.
X. Dai, Ph.D. thesis. University of New South Wales, 1993.
49.
M. Ghannam, E. Demesmaecker, J. Nijs, R. Mertens, and R. van Overstraeten, Conference Rec. 11th European Photovoltaic Solar Energy Conference, Montreux, Switzerland (Harwood, Switzerland, 1992), p. 45.
50.
J. Zhao, A. Wang, A. G. Aberle, S. R. Wenham, and M. A. Green, Proceedings of the 11th European Photovoltaic Solar Energy Conference, Montreux, Switzerland (Harwood, Switzerland, 1992), p. 272.
51.
J. Zhao, A. Wang, A. G. Aberle, S. R. Wenham, and M. A. Green (unpublished).
52.
D.
Kouvatsos
,
J. G.
Huang
,
V.
Saikumar
,
P. J.
Macfarlane
, and
R. J.
Jaccodine
,
J. Electrochem. Soc.
139
,
2322
(
1992
).
53.
X. W.
Wang
and
T. P.
Ma
,
J. Appl. Phys.
60
,
2634
(
1992
).
54.
A. G. Aberle, Progress Report for the Feodor Lynen Research Project, Alexander von Humboldt-Foundation, Germany, 1994 (unpublished).
This content is only available via PDF.
You do not currently have access to this content.