Evidence is presented that the normal operation of evaporated ZnS:Mn alternating‐current thin‐film electroluminescent (ACTFEL) devices involves electron‐hole pair generation by band‐to‐band impact ionization. Four observations are offered to support this assertion. These observations involve: (i) empirical field‐clamping trends, (ii) experimental and simulated trends in charge transfer characteristics, (iii) experimental attempts to assess the interface distribution using a field‐control circuit, and (iv) Monte Carlo simulation trends. Furthermore, the absence of overshoot in measured capacitance‐voltage and internal charge‐phosphor field curves indicates that a majority of the holes created by impact ionization are trapped at or near the phosphor/insulator interface. The multiplication factor (i.e., the total number of electrons transferred across the phosphor divided by the number of electrons injected from the phosphor/insulator cathode interface) is estimated, from device physics simulation of experimental trends, to be of the order 4–8 for evaporated ZnS:Mn ACTFEL devices operating under normal conditions.

1.
D. H.
Smith
,
J. Lumin.
23
,
209
(
1981
).
2.
W. E.
Howard
,
J. Lumin.
23
,
155
(
1981
).
3.
W. E.
Howard
,
O.
Sahni
, and
P. M.
Alt
,
J. Appl. Phys.
53
,
639
(
1982
).
4.
K. W. Yang, Ph.D. thesis, Oregon State University, 1981.
5.
K. W.
Yang
and
S. J. T.
Owen
,
IEEE Trans. Electron. Devices
ED-30
,
452
(
1983
).
6.
N. E.
Rigby
and
J. W.
Allen
,
J. Phys. C
21
,
3483
(
1988
).
7.
T. D.
Thompson
and
J. W.
Allen
,
J. Phys. C
20
,
L499
(
1987
).
8.
A. F.
Cattell
,
J. C.
Inkson
, and
J.
Kirton
,
J. Appl. Phys.
61
,
722
(
1987
).
9.
E.
Bringuier
,
J. Appl. Phys.
67
,
7040
(
1990
).
10.
G. O.
Mueller
,
Acta Polytechnica Scandinavica
170
,
15
(
1990
).
11.
R.
Mach
and
G. O.
Mueller
,
J. Cryst. Growth
101
,
967
(
1990
).
12.
V. P. Singh, Q. Xu, S. Krishna, and D. C. Morton, Electroluminescence, edited by V. P. Singh and J. C. Mc Clure (Cinco Puntos, El Paso, TX, 1992), p. 47.
13.
J. D.
Davidson
,
J. F.
Wager
,
I.
Khormaei
,
C. N.
King
, and
D.
Williams
,
IEEE Trans. Electron Devices
ED-39
,
1122
(
1992
).
14.
A. A. Douglas and J. F. Wager, SID 92 Digest, 365 (1992).
15.
A.
Abu-Dayah
,
S.
Kobayashi
, and
J. F.
Wager
,
Appl. Phys. Lett.
62
,
744
(
1993
).
16.
L. V. Pham, J. F. Wager, S. S. Sun, E. Dickey, R. T. Tuenge, and C. N. King, in Advanced Flat Panel Display Technologies, SPIE Proceedings 2174, edited by P. S. Friedman (SPIE, Bellingham, WA, 1994), pp. 190–199.
17.
E.
Bringuier
,
J. Appl. Phys.
66
,
1314
(
1989
).
18.
A.
Abu-Dayah
,
S.
Kobayashi
, and
J. F.
Wager
,
J. Appl. Phys.
74
,
5575
(
1993
).
19.
A. Abu-Dayah, M. S. thesis, Oregon State University, 1993.
20.
A.
Abu-Dayah
and
J. F.
Wager
,
J. Appl. Phys.
75
,
3593
(
1994
).
21.
A. A. Douglas, M. S. thesis, Oregon State University, 1993.
22.
K.
Bhattacharyya
,
S. M.
Goodnick
, and
J. F.
Wager
,
J. Appl. Phys.
73
,
3390
(
1993
).
23.
A. A.
Douglas
,
J. F.
Wager
,
D. C.
Morton
,
J. B.
Koh
, and
C. P.
Hogh
,
Appl. Phys. Lett.
63
,
231
(
1993
).
24.
A. A. Douglas, J. F. Wager, K. Bhattacharyya, S. M. Goodnick, D. C. Morton, J. B. Koh, and C. P. Hogh, SID 93 Digest, 851 (1993).
25.
S. Pennathur, K. Bhattacharyya, S. M. Goodnick, and J. F. Wager, Proceedings of the Third International Workshop on Computational Electronics, edited by S. M. Goodnick (Oregon State University Press, Corvallis, OR, 1994), p. 288.
This content is only available via PDF.
You do not currently have access to this content.