This paper studies the effects of gate voltage on heat generation and transport in a metal–semiconductor field effect transistor made of gallium arsenide (GaAs) with a gate length of 0.2 μm. Based on the interactions between electrons, optical phonons, and acoustic phonons in GaAs, a self‐consistent model consisting of hydrodynamic equations for electrons and phonons is developed. Concurrent study of the electrical and thermal behavior of the device shows that under a source‐to‐drain bias at 3 V and zero gate bias, the maximum electron temperature rise in this device is higher than 1000 K whereas the lattice temperature rise is of the order of 10 K, thereby exhibiting nonequilibrium characteristics. As the gate voltage is decreased from 0 to −2 V the maximum electron temperature increases due to generation of higher electric fields whereas the maximum lattice temperature reduces due to lower power dissipation. The nonequilibrium hot‐electron effect can reduce the drain current by 15% and must be included in the analysis. More importantly, it is found that the electron temperature rise is nearly independent of the thermal package conductance whereas the lattice temperature rise depends strongly on it. In addition, an increase of lattice temperature by 100 K can reduce the drain current by 25%.

1.
R. S. C. Cobbold, Theory and Applications of Field Effect Transitions (Wiley, New York, 1970).
2.
S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
3.
R. S. Pengally, Microwave Field-Effect Transistors: Theory, Design and Applications, 2nd ed. (Wiley, New York, 1986).
4.
J. R.
Zhou
and
D. K.
Ferry
,
IEEE Trans Electron Devices
39
,
473
(
1992
).
5.
C. Kittel, Introduction to Solid State Physics, 6th ed (Wiley, New York, 1986).
6.
P. C.
Becker
,
H. L.
Fragnito
,
J. C.
Brito Cruz
,
J.
Shah
,
R. L.
Fork
,
J. E.
Cunningham
,
J. E.
Henry
, and
C. V.
Shank
,
Appl. Phys. Lett.
53
,
2089
(
1988
).
7.
W. Z.
Lin
,
R. W.
Schoenlein
,
J. G.
Fujimoto
, and
E. P.
Ippen
,
IEEE J. Quantum Electron.
24
,
267
(
1988
).
8.
D. H.
Austin
,
Physics Today
Feb.,
46
(
1990
).
9.
C. L.
Peterson
and
S. A.
Lyon
,
Phys. Rev. Lett.
65
,
760
(
1990
).
10.
T.
Elsasser
,
J.
Shah
,
L.
Rota
, and
L.
Lugli
,
Phys. Rev. Lett.
66
,
1757
(
1991
).
11.
D.
von der Linde
,
J.
Kuhl
, and
H.
Kingenburg
,
Phys. Rev. Lett.
44
,
1505
(
1980
).
12.
K.
Blotekjaer
,
IEEE Trans. Electron Devices
ED-17
,
38
(
1970
).
13.
K.
Fushinobu
,
A.
Majumdar
, and
K.
Hijikata
,
ASME J. Heat Transfer
117
,
25
(
1995
).
14.
D. K. Ferry, Semiconductors (MacMillan, New York, 1991).
15.
An analogy can be made between the electron momentum equation and Navier-Stokes equation for fluids. Correct nondimensionalization yields a Reynolds number as a multiplying factor of the intertial terms. The electron Reynolds number has the form Re = eVdsτm2/(m*Lg2( where e is the electron charge and m* is the effective electron mass.
16.
J. Lai and A. Majumdar (unpublished).
17.
T. Nagasaki, K. Hijikata, K. Fushinobu, and P. E. Phelan, Proceedings of the Joint ASME/JSME Conference on Electronic Packaging, 1992 (unpublished), p. 217.
18.
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford University, London, 1959), p. 161.
19.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).
20.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
21.
C. N. Bhandari and D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).
22.
INSPEC, Properties of Gallium Arsenide, EMIS Datareviews Series No. 2, (IEEE, New York, 1986).
23.
H. K.-H. Hellewege, Numerical Data and Functional Relationships in Science and Technology, Group III: Crystal and Solid State Physics, (Springer, New York 1982), Vol. 17(a).
24.
C. M. Wolfe, N. Holonyak, Jr., and G. E. Stillman, Physical Properties of Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1989).
This content is only available via PDF.
You do not currently have access to this content.