The nature of keV ion damage buildup and amorphization in AlxGa1−xAs at liquid‐nitrogen temperature is investigated for various Al compositions using Rutherford backscattering channeling, transmission electron microscopy, and insitu time‐resolved‐reflectivity techniques. Two distinct damage buildup processes are observed in AlxGa1−xAs depending on Al content. At low Al content, the behavior is similar to GaAs whereby collisional disorder is ‘‘frozen in’’ and amorphization proceeds with increasing dose via the overlap of damage cascades and small amorphous zones created by individual ion tracks. However, some dynamic annealing occurs during implantation in AlGaAs and this effect is accentuated with increasing Al content. For high Al content, crystallinity is retained at moderate ion damage with disorder building up in the form of stacking faults, planar, and other extended defects. In the latter case, amorphization is nucleation limited and proceeds abruptly when the level of crystalline disorder exceeds a critical level. The amorphization threshold dose increases with increasing Al composition by over two orders of magnitude from GaAs to AlAs. Dynamic annealing and damage creation processes during implantation compete very strongly in AlxGa1−xAs even at liquid‐nitrogen temperatures. This behavior is discussed in terms of both the availability of very fast mobile defects and bonding configurational changes related to the Al sublattice in AlxGa1−xAs of high Al content.

1.
Ion Implantation and Beam Processing, edited by J. S. Williams and J. M. Poate (Academic, Sydney, 1984).
2.
S. J.
Pearton
,
Mater. Sci. Rep.
4
,
313
(
1990
).
3.
Y.
Hirayama
,
Y.
Suzuki
,
S.
Tarucha
, and
H.
Okamoto
,
Jpn. J. Appl. Phys.
24
,
L516
(
1985
).
4.
D. G.
Deppe
and
N.
Holonyak
, Jr.
,
J. Appl. Phys.
64
,
R93
(
1988
).
5.
F. E.
Prins
,
G.
Lehr
,
H.
Schweizerand
, and
G. W.
Smith
,
Appl. Phys. Lett.
63
,
1402
(
1993
).
6.
J. S.
Williams
,
H. H.
Tan
,
R. D.
Goldberg
,
R. A.
Brown
, and
C.
Jagadish
,
Mater. Res. Symp. Proc.
316
,
15
(
1994
).
7.
A. G.
Cullis
,
A.
Polman
,
P. W.
Smith
,
D. C.
Jacobson
,
J. M.
Poate
, and
C. R.
Whitehouse
,
Nucl. Instrum. Methods B
62
,
463
(
1992
).
8.
I.
Jencic
,
M. W.
Bench
, and
I. M.
Robertson
,
J. Appl. Phys.
69
,
1287
(
1991
).
9.
I.
Jencic
,
M. W.
Bench
, and
I. M.
Robertson
,
M. A.
Kirk
, and
J.
Peternelj
,
Nucl. Instrum. Methods B
59/60
,
458
(
1991
).
10.
C.
Vieu
,
M.
Schneider
,
H.
Launois
, and
B.
Descouts
,
J. Appl. Phys.
71
,
4833
(
1992
).
11.
J. S.
Williams
,
C.
Jagadish
,
A.
Clark
,
G.
Li
, and
C. A.
Larsen
,
Nucl. Instrum. Methods B
74
,
80
(
1993
).
12.
A. G.
Cullis
,
N. G.
Chew
,
C. R.
Whitehouse
,
D. C
Jacobson
,
J. M.
Poate
, and
S. J.
Pearton
,
Appl. Phys. Lett.
55
,
1211
(
1989
).
13.
A. G.
Cullis
,
P. W.
Smith
,
D. C.
Jacobson
, and
J. M.
Poate
,
J. Appl. Phys.
69
,
1279
(
1991
).
14.
D. J.
Eaglesham
,
J. M.
Poate
,
D. C.
Jacobson
,
M.
Cerullo
,
L. N.
Pfeiffer
, and
K.
West
,
Appl. Phys. Lett.
58
,
523
(
1991
).
15.
D. K.
Sadana
,
Nucl. Instrum. Methods B
7/8
,
375
(
1985
).
16.
W.
Wesch
,
Nucl. Instrum. Methods B
68
,
342
(
1992
).
17.
J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ion in Solids (Pergamon, New York, 1985).
18.
J. S.
Williams
and
M. W.
Austin
,
Appl. Phys. Lett.
36
,
994
(
1980
).
19.
S. T.
Johnson
,
J. S.
Williams
,
R. G.
Elliman
,
A. P.
Pogany
,
E.
Nygren
, and
G. L.
Olson
,
Mater. Res. Symp. Proc.
82
,
127
(
1987
).
20.
Ion Beams for Materials Analysis, edited by J. R. Bird and J. S. Williams (Academic, Sydney, 1989), Chap. 6.
21.
H. H. Tan, C. Jagadish, J. S. Williams, J. Zou, D. J. H. Cockayne, and A. Sikorski (unpublished).
22.
J. S.
Vetrano
,
M. W.
Bench
,
I. M.
Robertson
, and
M. A.
Kirk
,
Met. Trans.
20A
,
2673
(
1989
).
23.
B. A. Turkot, D. V. Forbes, H. Xiao, I. M. Robertson, J. J. Coleman, M. A. Kirk, L. E. Rehn, and P. Baldo, Mater. Res. Symp. Proc. (1994).
24.
J. S.
Williams
,
R. G.
Elliman
,
S. T.
Johnson
,
D. K.
Sengupta
, and
J. M.
Zemanski
,
Mater. Res. Soc. Symp. Proc.
144
,
355
(
1989
).
25.
T. E.
Haynes
and
O. W.
Holland
,
Appl. Phys. Lett.
59
,
452
(
1991
).
26.
F.
Morehead
and
B. L.
Crowder
,
Rad. Eff.
6
,
27
(
1970
).
27.
F. L. Vook, Radiation Damage and Defects in Semiconductors (Institute of Physics, London, 1971), p. 60.
28.
M. L.
Swanson
,
J. R.
Parsons
, and
C. W.
Hoelke
,
Rad. Eff.
9
,
249
(
1971
).
29.
J. S. Williams (unpublished work).
30.
G. L.
Olson
and
R. A.
Roth
,
Mater. Sci. Rept.
3
,
1
(
1988
), and references therein.
31.
H. H. Tan, C. Jagadish, and J. S. Williams (unpublished data).
32.
J. L.
Klatt
,
R. S.
Averback
,
D. V.
Forbes
, and
J. J.
Coleman
,
Phys. Rev. B
48
,
17629
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.