The performance of fused silica for deep ultraviolet optical applications is adversely affected by a radiation‐induced absorbance centered at 210 nm which is attributed to the formation of E′ centers. In this work, the 1H nuclear magnetic resonance spin‐lattice relaxation rates, 1/T1 of various types of unirradiated fused silica were shown to be correlated to variations in the transmission at 210 nm (T210) that occurs upon irradiation. High concentrations of spin‐lattice relaxation centers correlate with the ability to withstand larger numbers of 248 nm laser pulses before a sudden drop in T210, known as the strong‐absorption transition (SAT), occurs. If irradiation is halted prior to the SAT, higher concentrations of these centers also correlate with faster rates of partial T210 recovery. We propose that these centers are diamagnetic defects consisting of an adjacent pair of silanol groups that release mobile hydrogen upon irradiation. This hydrogen can reversibly passivate E′ centers, thus accounting for the differences in partial recovery rates of T210 prior to SAT. We also propose the onset of the SAT corresponds to the consumption of all the irradiation susceptible silanol pair defects, after which no partial recovery of T210 is observed when laser irradiation has ceased.

1.
M.
Rothschild
and
D. J.
Ehrlich
,
J. Vac. Sci. Technol. B
6
,
1
(
1988
).
2.
R. J.
Bell
and
P.
Dean
,
Philos. Mag.
25
,
1381
(
1992
).
3.
J. H.
Stathis
and
M. A.
Kastner
,
Philos. Mag. B
49
,
357
(
1984
);
J. H.
Stathis
and
M. A.
Kastner
,
Phys. Rev. B
29
,
7029
(
1984
);
J. H.
Stathis
and
M. A.
Kastner
,
Phys. Rev. B
35
,
2972
(
1987
).,
Phys. Rev. B
4.
M.
Rothschild
,
D. J.
Ehrlich
, and
D. C.
Shaver
,
Appl. Phys. Lett.
55
,
1276
(
1989
).
5.
D. L.
Griscom
,
J. Ceram. Soc. Jpn.
99
,
923
(
1991
).
6.
R. A.
Weeks
and
C. M.
Nelson
,
J. Am. Ceram. Soc.
43
,
399
(
1960
).
7.
R. A. Weeks and E. Sonder, in Paramagnetic Resonance II, edited by W. Low (Academic, New York, 1963), p. 869.
8.
R. A.
Weeks
,
R. H.
Magruder
III
, and
P. W.
Wang
,
J. Non-Cryst Solids
149
,
122
(
1992
).
9.
R. W.
Lee
,
Phys. Chem. Glasses
5
,
35
(
1964
).
10.
T. E.
Tsai
,
D. L.
Griscom
, and
E. J.
Friebele
,
Phys. Rev. Lett.
61
,
444
(
1988
).
11.
G. C.
Escher
,
SPIE Proc.
998
,
30
(
1988
).
12.
M.
Rothschild
,
D. J.
Ehrlich
, and
D. C.
Shaver
,
Appl. Phys. Lett.
55
,
1276
(
1989
).
13.
D. J.
Krajnovich
,
I. K.
Pour
,
A. C.
Tarn
,
W. P.
Leung
, and
M. V.
Kulkarni
,
SPIE Proc.
1848
,
544
(
1993
).
14.
Heraeus: Quartx Glass of Optics, Data and Properties (POL-)/102Ea);
Fused Quartz and Fused Silica for Optics (40–1015–079).
15.
Shin-Etsu Quartz Products: Suprasil P Series Technical Sheet (12.2’86);
Transparent and Opaque Quartz Glass (Q-A1/112.1E).
16.
D. J.
Krajnovich
,
I. K.
Pour
,
A. C.
Tarn
,
W. P.
Leung
, and
M. V.
Kulkarni
,
Opt. Lett.
18
,
453
(
1993
).
17.
D. H.
Levy
,
K. K.
Gleason
,
M.
Rothschild
,
J. H. C.
Sedlacek
, and
R.
Takke
,
Appl. Phys. Lett.
60
,
1667
(
1992
).
18.
D. H.
Levy
,
K. K.
Gleason
,
M.
Rothschild
, and
J. H. C.
Sedlacek
,
J. Appl. Phys.
73
,
2809
(
1993
).
19.
D.
Tse
and
I. J.
Lowe
,
Phys. Rev.
166
,
166
(
1968
).
20.
W. P.
Leung
,
M.
Kulkarni
,
D.
Krajnovich
, and
A. C.
Tam
,
Appl. Phys. Lett.
58
,
551
(
1991
).
21.
M.
Stapelbroek
,
D. L.
Griscom
,
E. J.
Friebele
, and
G. H.
Sigel
, Jr.
,
J. Non-Cryst. Solids
32
,
313
(
1979
).
22.
A. G.
Revesz
,
J. Electrochem. Soc.
126
,
124
(
1979
).
23.
D. H.
Levy
and
K. K.
Gleason
,
J. Vac. Sci. Technol. A
11
,
105
(
1993
).
24.
T. C. Farrar and E. E. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods (Academic, New York, 1971), p. 20.
25.
H. Y.
Carr
and
E. M.
Purcell
,
Phys. Rev.
94
,
630
(
1954
).
26.
D. M.
Bartels
,
D. W.
Werst
, and
A. D.
Trifunac
,
Chem. Phys. Lett.
142
,
191
(
1987
).
27.
D. J. Krajnovich (private communication).
This content is only available via PDF.
You do not currently have access to this content.