248 nm excimer laser ablation of carefully prepared CuCl samples is reported, and shown to occur by a predominantly thermal mechanism. Using a quartz‐crystal microbalance (QCM) to monitor ablation, a precise and detailed plot of single‐pulse mass removal versus incident fluence was obtained for fluences up to 150 mJ/cm2. A two‐parameter Arrhenius exponential function was found to fit the experimental ablation data. Calculations of laser‐induced surface heating were carried out by use of a finite‐difference heating code, formulated in terms of enthalpy. Ablation was observed to commence at a fluence of 25 mJ/cm2, where the calculated surface temperature is approximately 910 K—some 200 K above the melting point. Dynamic ablation was included in the finite‐difference calculation by allowing the position of the CuCl surface ξ to vary in time. The best data fit is provided by the zeroth‐order kinetic equation: dξ(t)/dt=(16 Å/ns)exp[(−38 kJ/mole)/RTξ], where Tξ is the surface temperature. A thermodynamic calculation shows the average heat of CuCl vaporization in the temperature range from 900 to 2000 K to be near the fit value of 38 kJ/mole. From plots of the ablation depth versus time, the CuCl surface was estimated to recede during the ablation at rates up to 10 cm/s.  

1.
W.
Sesselman
,
E. E.
Marinero
, and
T. J.
Chuang
,
Appl. Phys.
41
,
209
(
1986
).
2.
T. S.
Baller
,
G. N. A.
van Veen
, and
J.
Dieleman
,
J. Vac. Sci. Technol. A
6
,
1409
(
1988
).
3.
G. N. A.
van Veen
,
T. S.
Baller
, and
J.
Dieleman
,
Appl. Phys. A
47
,
183
(
1988
).
4.
J. J.
Ritsko
,
F.
Ho
, and
J.
Hurst
,
Appl. Phys.
53
,
78
(
1988
).
5.
J.
Brannon
and
K. W.
Brannon
,
J. Vac. Sci. Technol. B
7
,
1275
(
1989
).
6.
J. R. Lankard, F. C. Burns, and J. J. Kaufman, in Laser Processes for Microelectronic Applications, edited by J. J. Ritsko, D. J. Ehrlich, and M. Kashiwagi (The Electrochemical Society, Honolulu, 1988), Vol. 88-10, p. 113.
7.
J. C. S. Kools, T. S. Baller, and J. Dieleman, in Photochemical Processes of Electronic Materials, edited by I. W. Boyd (Academic, New York, 1992), p. 339.
8.
C. R. Moylan and T. J. Chuang, in Laser Processes for Microelectronic Applications, edited by J. J. Ritsko, D. J. Ehrlich, and M. Kashiwagi (The Electrochemical Society, Honolulu, 1988), Vol. 88-10, p. 123.
9.
H.
Tang
and
I. P.
Herman
,
J. Vac. Sci. Technol. A
8
,
1608
(
1990
).
10.
P. E.
Dyer
,
R. D.
Greenough
, and
P. H.
Key
,
Adv. Mater. Opt. Elec.
1
,
51
(
1992
).
11.
W.
Sesselmann
,
E. E.
Marinero
, and
T. J.
Chuang
,
Surf. Sci.
178
,
787
(
1986
).
12.
G. N. A.
van Veen
,
T.
Baller
, and
A. E.
de Vries
,
J. Appl. Phys.
60
,
3746
(
1986
).
13.
J. E.
Rothenberg
,
G.
Koren
, and
J. J.
Ritsko
,
J. Appl. Phys.
57
,
5072
(
1985
).
14.
H. Remy, Treatise on Inorganic Chemistry (Elsevier, Amsterdam, 1956), Vol. 2.
15.
H.
Hecht
and
G.
Muller
,
Z. Phys. Chem.
202
,
403
(
1953
).
16.
B.
Carlsson
and
G.
Wettermark
,
J. Photochem.
5
,
421
(
1976
).
17.
G. M. Schwab and F. Nissl, Federal Republic of Germany Patent No. 950, 428 (1956).
18.
S.
Küper
,
J.
Brannon
, and
K.
Brannon
,
Appl. Phys. A
56
,
43
(
1993
).
19.
J. F. Ready, Effects of High Power Laser Radiation (Academic, New York, 1971).
20.
M. von Allmen, in Laser-Solid Interactions and Transient Thermal Processing, edited by J. Narayan, W. L. Brown, and R. A. Lemons (Materials Research Society, Pittsburgh, PA, 1983), Vol. 13, p. 691.
21.
R. F.
Wood
and
G. A.
Geist
,
Phys. Rev. B
34
,
2606
(
1986
).
22.
D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed. (National Bureau of Standards, Washington, DC, 1971).
23.
R.
Kelly
and
J.
Rothenberg
,
Nucl. Instrum. Methods Phys. Res. B
7/8
,
755
(
1985
).
24.
J. H.
Brannon
,
J. R.
Lankard
,
A. I.
Baise
,
F.
Burns
, and
J.
Kaufman
,
J. Appl. Phys.
58
,
2036
(
1985
).
25.
M.
Cardona
,
Phys. Rev.
129
,
69
(
1963
).
26.
S. R.
Cain
,
F. C.
Burns
, and
C. E.
Otis
,
J. Appl. Phys.
71
,
4107
(
1992
).
27.
C. I. H. Ashby, in Physics of Thin Films, edited by M. Francombe and J. Vossen (Academic, San Diego, CA, 1987), Vol. 13, p. 151.
28.
G.
Krabbes
and
H.
Oppermann
,
Z. Anorg. Allg. Chem.
435
,
33
(
1977
).
29.
F. D.
Bennett
,
Phys. Fluids
8
,
1425
(
1965
).
This content is only available via PDF.
You do not currently have access to this content.