Raman spectroscopy was used to examine the structure of barium titanium oxide thin films grown by metal‐organic chemical vapor deposition (MOCVD) and laser‐assisted deposition. The spectra were compared with the spectra of a ceramic specimen and a single crystal. Raman peaks specific to the tetragonal ferroelectric phase of BaTiO3 were seen in the spectra of several films. Other Raman peaks were ascribed to impurity (non‐BaTiO3) phases in the films or to the substrates (fused quartz, MgO). Some of the Raman peaks showed a strong polarization dependence. The MOCVD films were also characterized by x‐ray diffraction, energy‐dispersive x‐ray spectroscopy, and transmission electron microscopy. The film‐to‐film variation of the strength of BaTiO3 features in the Raman spectrum, relative to impurity‐phase features, was qualitatively consistent with the x‐ray diffraction and electron microscopy results. Spatially resolved Raman measurements showed that the structure of the laser‐deposited film varies significantly over the deposited area. The temperature dependencies of the Raman spectra of two MOCVD films were examined in the 25–175 °C range. Raman peaks due to the tetragonal phase of BaTiO3 were observed at temperatures well above the Curie temperature of bulk single‐crystal BaTiO3 (132 °C). This observation suggests that the tetragonal ferroelectric phase is stabilized by an anisotropic film‐substrate interaction that gives rise to a two‐dimensional stress in the plane of the film.

1.
J. A.
Sanjurjo
,
R. S.
Katiyar
, and
S. P. S.
Porto
,
Phys Rev. B
22
,
2396
(
1980
).
2.
J. L.
Parsons
and
L.
Rimai
,
Solid State Commun.
5
,
423
(
1967
).
3.
A.
Pinczuk
,
W.
Taylor
,
E.
Burstein
, and
I.
Lefkowitz
,
Solid State Commun.
5
,
429
(
1967
).
4.
M.
DiDomenico
,
S. H.
Wemple
,
S. P. S.
Porto
, and
R. P.
Bauman
,
Phys. Rev.
174
,
522
(
1968
).
5.
D. L.
Kaiser
,
M. D.
Vaudin
,
G.
Gillen
,
C.-S.
Hwang
,
L. H.
Robins
, and
L. D.
Rotter
,
J. Cryst. Growth
137
,
136
(
1994
).
6.
Films N30, N33, N36, and N35 are the same as the films with QBa/QTi = 22.2, 15.0, 12.5, and 10.7, respectively, in Table 2 of Ref. 5, films N36 and N40 are the same as films A and B, respectively, of Ref. 7.
7.
D. L. Kaiser, M. D. Vaudin, G. Gillen, C.-S. Hwang, L. H. Robins, and L. D. Rotter, in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by S. B. Desu, D. B. Beach, B. W. Wessels, and S. Gokoglu (MRS, Pittsburgh, PA, in press), Vol. 335.
8.
P. C. Van Buskirk, G. T. Stauf, R. Gardiner, and P. S. Kirlin, in Ferroelectric Thin Films III, edited by B. A. Tuttle, E. R. Myers, S. B. Desu, and P. K. Larsen (MRS, Pittsburgh, PA, 1993), Vol. 310, p. 119.
9.
L. H.
Robins
,
E. N.
Farabaugh
, and
A.
Feldman
,
J. Mater. Res.
5
,
2456
(
1990
).
10.
M. P.
Fontana
and
M.
Lambert
,
Solid State Commun.
10
,
1
(
1972
).
11.
F. L.
Ga̧leener
,
Phys. Rev. B
19
,
4292
(
1979
).
12.
F. L.
Galeener
,
R. A.
Barrio
,
E.
Martinez
, and
R. J.
Elliot
,
Phys. Rev. Lett.
53
,
2429
(
1984
).
13.
D. R.
Tallant
,
T. A.
Michalske
, and
W. L.
Smith
,
J. Non-Cryst. Sol.
106
,
380
(
1988
).
14.
Y. Yacoby, in Optical Properties of Solids-New Developments, edited by B. O. Seraphin (North-Holland, Amsterdam, 1976), pp. 760–777.
15.
P. W.
Forsbergh
, Jr.
,
Phys. Rev.
93
,
686
(
1954
).
16.
L. A.
Shevanov
,
Phys. Status Solidi A
65
,
321
(
1981
).
17.
G. A.
Rossetti
, Jr.
,
L. E.
Cross
, and
K.
Kushida
,
Appl. Phys. Lett.
59
,
2524
(
1991
).
18.
M. D. Vaudin, L. P. Cook, W. Wong-Ng, P. K. Schenck, P. S. Brody, B. J. Rod, and K. W. Bennet, in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. Tuttle (MRS, Pittsburgh, PA, 1992), Vol 243, p. 513.
19.
Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermophysical Properties of Matter (IFI/Plenum, New York, 1970), Vol. 12.
This content is only available via PDF.
You do not currently have access to this content.