Electrical and optical spectroscopic studies of TiO2 anatase thin films deposited by sputtering show that the metastable phase anatase differs in electronic properties from the well‐known, stable phase rutile. Resistivity and Hall‐effect measurements reveal an insulator–metal transition in a donor band in anatase thin films with high donor concentrations. Such a transition is not observed in rutile thin films with similar donor concentrations. This indicates a larger effective Bohr radius of donor electrons in anatase than in rutile, which in turn suggests a smaller electron effective mass in anatase. The smaller effective mass in anatase is consistent with the high mobility, bandlike conduction observed in anatase crystals. It is also responsible for the very shallow donor energies in anatase. Luminescence of self‐trapped excitons is observed in anatase thin films, which implies a strong lattice relaxation and a small exciton bandwidth in anatase. Optical absorption and photoconductivity spectra show that anatase thin films have a wider optical absorption gap than rutile thin films.

1.
F. A.
Grant
,
Rev. Mod. Phys.
31
,
646
(
1959
).
2.
J. B.
Goodenough
,
Prog. Solid State Chem.
5
,
145
(
1971
).
3.
V. E.
Henrich
,
Rep. Prog. Phys.
48
,
1481
(
1985
).
4.
M.
Graetzel
,
Comments Inorg. Chem.
12
,
93
(
1991
).
5.
H.
Berger
,
H.
Tang
, and
F.
Lévy
,
J. Cryst. Growth
130
,
108
(
1993
).
6.
L.
Forro
,
O.
Chauvet
,
D.
Emin
,
L.
Zuppiroli
,
H.
Berger
, and
F.
Lévy
,
J. Appl. Phys.
75
,
633
(
1994
).
7.
O. Chauvet, L. Forro, and M. Miljak (unpublished).
8.
H.
Tang
,
H.
Berger
,
P. E.
Schmid
,
F.
Lévy
, and
G.
Burri
,
Solid State Commun.
87
,
847
(
1993
).
9.
D.
Wicaksana
,
A.
Kobayashi
, and
A.
Kinbara
,
J. Vac. Sci. Technol. A
10
,
1479
(
1992
).
10.
T.
Ohsaka
,
F.
Izumi
, and
Y.
Fujiki
,
J. Raman Spectrosc.
7
,
321
(
1978
).
11.
S. P. S.
Porto
,
P. A.
Fleury
, and
T. C.
Damen
,
Phys. Rev.
154
,
522
(
1967
).
12.
M. N.
Alexander
and
D. F.
Holcomb
,
Rev. Mod. Phys.
40
,
815
(
1968
).
13.
R. G.
Breckenridge
and
W. R.
Hosier
,
Phys. Rev.
91
,
793
(
1953
).
14.
J. W.
Orton
and
M. J.
Powell
,
Rep. Prog. Phys.
43
,
1263
(
1980
).
15.
H.
Fritzche
and
M.
Cuevas
,
Phys. Rev.
119
,
1238
(
1960
).
16.
N. F.
Mott
,
Proc. Phys. Soc. A
62
,
416
(
1949
);
N. F.
Mott
,
Phil. Mag.
6
,
287
(
1961
);
N. F.
Mott
,
Adv. Phys.
16
,
49
(
1967
).
17.
N. F.
Mott
,
Can. J. Phys.
34
,
1356
(
1956
).
18.
H. P. R.
Frederikse
,
J. Appl. Phys.
32
,
2211
(
1961
).
19.
J.
Hubbard
,
Proc. R. Soc. A
277
,
237
(
1964
).
20.
N. F. Mott and E. A. Davis, in Electronic Processes in Noncrystalline Materials (Clarendon, Oxford, 1971), pp. 117, 148–150.
21.
A.
Eucken
and
U. A.
Büchner
,
Z. Phys. Chem. B
27
,
321
(
1934
).
22.
S.
Roberts
,
Phys. Rev.
76
,
1215
(
1949
).
23.
B.
Silvi
,
N.
Fourati
,
R.
Nada
, and
C. R. A.
Catlow
,
J. Phys. Chem. Solids
52
,
1005
(
1991
).
24.
A.
Fahmi
,
C.
Minot
,
B.
Silvi
, and
M.
Causa
,
Phys. Rev. B
47
,
11717
(
1993
).
25.
K. M.
Glassford
and
J. R.
Chelikowsky
,
Phys. Rev. B
46
,
1284
(
1992
).
26.
J.
Pascual
,
J.
Camassel
, and
M.
Mathieu
,
Phys. Rev. B
18
,
5606
(
1978
).
27.
N.
Daude
,
C.
Gout
, and
C.
Jouanin
,
Phys. Rev. B
15
,
3229
(
1977
).
28.
A.
Amtout
and
R.
Leonelli
,
Solid State Commun.
84
,
349
(
1992
).
29.
Y.
Toyozawa
,
J. Lumin.
12/13
,
13
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.