Under one‐sun illumination, the highest energy conversion efficiencies of silicon solar cells are presently obtained with bifacially contacted n+p cells, where contact to the p‐type substrate is made via small openings in the rear passivating oxide. In this work, a state‐of‐the‐art 2‐dimensional (2D) semiconductor device simulator is applied to these devices in order to investigate the effects arising from the rear metallization scheme. The impact of various cell parameters [i.e., substrate resistivity, rear surface recombination model (flatband or surface band bending conditions), positive oxide charge density, capture cross section ratio] on the cell’s current‐voltage (IV) characteristics and the optimum rear contact spacing is investigated. The highly nonideal IV curves of rear point‐contacted high‐efficiency silicon solar cells made at the University of New South Wales (UNSW) are modeled with a high degree of accuracy. This is achieved by properly accounting for the complex recombination behavior at the rear oxidized surface. The 2D simulations show that the nonideal IV curves result from the unequal capture cross sections of electrons and holes at the rear Si‐SiO2 interface and the surface band bending induced by positive oxide charges and metal/silicon work function differences. For the UNSW cells, optimum one‐sun efficiency is obtained on 2 Ω cm substrates and rear contact spacings of 0.2–0.3 mm. The 2D simulations presented in this work clearly confirm the experimental findings and reveal the physical mechanisms which favor this particular contact design.

1.
R. A.
Sinton
,
Y.
Kwark
,
J. Y.
Gan
, and
R. M.
Swanson
,
IEEE Trans. Electron Dev. Lett.
7
,
567
(
1986
).
2.
A. W.
Blakers
,
A.
Wang
,
A. M.
Milne
,
J.
Zhao
, and
M. A.
Green
,
Appl. Phys. Lett.
55
,
1363
(
1989
).
3.
A.
Wang
,
J.
Zhao
, and
M. A.
Green
,
Appl. Phys. Lett.
57
,
602
(
1990
).
4.
M. A.
Green
and
K.
Emery
,
Prog. Photovoltaics
1
,
25
(
1993
).
5.
M. A.
Green
,
A. W.
Blakers
,
J.
Zhao
,
A. M.
Milne
,
A.
Wang
, and
X.
Dai
,
IEEE Trans. Electron Dev.
37
,
331
(
1990
).
6.
A. C.
Aberle
,
S. J.
Robinson
,
A.
Wang
,
J.
Zhao
,
S. R.
Wenham
, and
M. A.
Green
,
Prog. Photovoltaics
1
,
133
(
1993
).
7.
A. G.
Aberle
,
S. R.
Wenham
,
M. A.
Green
, and
G.
Heiser
,
Prog. Photovoltaics
2
,
3
(
1994
).
8.
M. Sehöfthaler, U. Rau, W. Füssel, and J. H. Werner, Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, (IEEE, New York, 1993), p. 315.
9.
S. Sterk and S. W. Glunz, Proceedings of the 5th International IEEE Conference on Simulation of Semiconductor Devices and Processes (SISDEP), Vienna (Springer, Vienna, 1993), p. 393.
10.
M. A. Green, Solar Cells (University of New South Wales, Kensington, NSW, Australia, 1982).
11.
J. Knobloch, A. Aberle, and B. Voss, Proceedings of the 9th European Photovoltaic Solar Energy Conference, Freiburg (Kluwer Academic, Dordrecht, 1989), p. 777.
12.
SIMUL Manual, Integrated Systems Lab, ETH Zurich, Switzerland, 1992.
13.
S.
Müller
,
K.
Kells
, and
W.
Fichtner
,
IEEE Trans. Computer-Aided Design
11
,
855
(
1992
).
14.
D.
Schroder
and
D.
Meter
,
IEEE Trans. Electron Dev.
31
,
637
(
1984
).
15.
D. Kendall, presented at the Conference “Physics and Application of Lithium Diffused Silicon,” NASA Space Flight Center, USA, 1969.
16.
S. K.
Pang
,
A.
Rohatgi
,
B. L.
Sopori
, and
G.
Fiegl
,
J. Electrochem. Soc.
137
,
1977
(
1990
).
17.
S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
18.
R. R. King, R. A. Sinton, and R. M. Swanson, Proceedings of the 19th IEEE Photovoltaic Specialists Conference, New Orleans (IEEE, New York, 1987), p. 1168.
19.
R. R.
King
,
R. A.
Sinton
, and
R. M.
Swanson
,
IEEE Trans. Electron Devices
37
,
365
(
1990
).
20.
R. R.
King
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
38
,
1399
(
1991
).
21.
A. G. Aberle, W. Warta, J. Knobloch, and B. Voss, Proceedings of the 21st IEEE Photovoltaic Specialists Conference, Orlando (IEEE, New York, 1990), p. 233.
22.
A. G. Aberle, Ph.D thesis (in German), University of Freiburg, Germany, 1991.
23.
S. K. Ghandi, VLSI Fabrication Principles (Wiley, New York, 1983).
24.
A. W.
Blakers
and
M. A.
Green
,
Appl. Phys. Lett.
48
,
215
(
1986
).
25.
S.
Narayanan
and
M. A.
Green
,
Solar Cells
26
,
329
(
1989
).
26.
M. A. Green, A. W. Blakers, J. Zhao, A. Wang, A. M. Milne, X. Dai, and C. M. Chong, Report SAND89–7041, Sandra National Laboratories, Albuquerque, NM (1989).
27.
A. G.
Aberle
,
S.
Glunz
, and
W.
Warta
,
J. Appl. Phys.
71
,
4422
(
1992
).
28.
J. Knobloch, A. Aberle, W. Warta, and B. Voss, Proceedings of tlie 8th European Photovoltaic Solar Energy Conference, Florence (Kluwer Academic, Dordrecht, 1988), p. 1165.
29.
E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).
30.
A. G. Aberle, S. R. Wenham, and M. A. Green, Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville (IEEE, New York, 1993), p. 133.
31.
J. Beier and B. Voss, Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville (IEEE, New York, 1993), p. 321.
32.
S. J. Robinson, A. G. Aberle, and M. A. Green (unpublished).
33.
F. A.
Lindholm
,
J. G.
Fossum
, and
E. L.
Burgess
,
IEEE Trans. Electron Dev.
26
,
165
(
1979
).
34.
S. J. Robinson, A. G. Aberle, and M.A. Green (unpublished),
35.
P. A.
Basore
,
IEEE Trans. Electron Dev.
37
,
337
(
1990
).
36.
A. G. Aberle, J. Zhao, A. Wang, S. J. Robinson, and M. A. Green (unpublished).
37.
A. Wang and J. Zhao (private communication, 1993).
This content is only available via PDF.
You do not currently have access to this content.