Probability distributions are evaluated for electromigration induced open failures in narrow, passivated interconnects with a near‐bamboo grain structure. Void formation is initiated at the cathode ends of the polycrystalline line segments or ‘‘grain clusters.’’ If these clusters are longer than a critical size Lc, they can accommodate enough atoms for voids to reach the critical size to fail the line. Obviously, the critical size Lc depends on the thermal stress: a cluster under a tensile stress is able to incorporate more atoms from the void than an unstressed cluster. In the case the clusters are shorter than Lc, atoms from the voids must be distributed also to bamboo sections, outside the clusters, in order for the voids to induce open failures. Based on this physical picture, failure probabilities are evaluated as a function of time. The predicted failure distributions and parametric dependencies compare well with the experiments.

1.
F. M. d’Heurle and P. S. Ho, in Thin Films: Interdiffusion and Reactions, edited by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley-Interscience, New York, 1978), p. 243.
2.
T. Kwok and P. S. Ho, in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by D. Gupta and P. S. Ho (Noyes, Park Ridge, NJ, 1988), p. 369.
3.
J. T. Yue, W. P. Funsten, and R. V. Taylor, Proceedings of the 23rd International Reliability Physics Symposium (IEEE, New York, 1985), p. 126.
4.
C.-Y.
Li
,
R. D.
Black
, and
W. R.
LaFontaine
,
Appl. Phys. Lett.
53
,
31
(
1988
).
5.
C-.Y.
Li
,
P.
Bo/rgesen
, and
T. D.
Sullivan
,
Appl. Phys. Lett.
59
,
1464
(
1991
).
6.
P. Bo/rgesen, M. A. Korhonen, D. D. Brown, and C.-Y. Li, in Stress Induced Phenomena in Metallization, edited by C.-Y. Li, P. Totta, and P. Ho, AIP Conf. Proc. 263 (AIP, New York, 1992), p. 219.
7.
M. A. Korhonen, P. Bo/rgesen, and C.-Y. Li, in Stresses and Mechanical Properties in Thin Films III, edited by W. D. Nix, J. C. Bravman, E. Arzt, and L. B. Freund, MRS Symp. Proc. No. 239 (Material Research Society, Pittsburgh, PA, 1992), p. 695.
8.
M. A.
Korhonen
,
P.
Bo/rgesen
,
K. N.
Tu
, and
Che-Yu
Li
,
J. Appl. Phys.
73
,
3790
(
1993
).
9.
I. A.
Blech
and
C.
Herring
,
Appl. Phys. Lett.
29
,
131
(
1976
).
10.
A. Tezaki, T. Mineta, H. Egawa, and T. Noguchi, Proceedings of the 28th International Reliability Physics Symposium (IEEE, New York, 1990), p. 221.
11.
J.
Cho
and
C. V.
Thompson
,
Appl. Phys. Lett.
54
,
2577
(
1989
).
12.
E.
Kinsbron
,
Appl. Phys. Lett.
36
,
968
(
1980
).
13.
E.
Arzt
and
W. D.
Nix
,
J. Mater. Res.
6
,
731
(
1991
).
14.
D. T.
Walton
,
H. J.
Frost
, and
C. V.
Thompson
,
Mater. Res. Soc. Symp. Proc.
225
,
219
(
1991
).
15.
T. Kwok, Proceedings of the 26th International Reliability Physics Symposium (IEEE, New York, 1988), p. 185.
16.
C. A. Paszkiet, Ph.D. thesis, Cornell University, 1992.
17.
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, UK, 1947).
18.
A.
Needleman
and
J. R.
Rice
,
Acta Metall.
28
,
1325
(
1980
).
19.
M. H. Wood, S. C. Bergman, and R. S. Hemmert, Proceedings of the 29th International Reliability Physics Symposium (IEEE, New York, 1991), p. 70.
20.
S. S. Menon, A. K. Gorti, and K. F. Poole, Proceedings of the 30th International Reliability Physics Symposium (IEEE, New York, 1992), p. 373.
21.
H. Kahn and C. V. Thompson, and S. S. Cooperman, in Materials Reliability in Microelectronics II, edited by C. V. Thompson and J. R. Lloyd, MRS Symp. Proc. No. 265 (Material Research Society, Pittsburgh, PA, 1992), p. 65.
22.
T. D. Sullivan (private communication).
23.
K. M. Brown, SRC 2001 Packaging Goals (SRC, Research Triangle Park, NC, 1992).
24.
S. R.
deGroot
,
Physica
9
,
699
(
1942
).
This content is only available via PDF.
You do not currently have access to this content.