The laser irradiation process is a promising method for the fabrication of metastable Al5–Nb3Al(Ge,Si) compounds. Thereby Nb‐sheathed Nb‐25 at. % Al(Ge,Si) microcomposite tapes are prepared by a conventional powder metallurgical method and heat treated by a high‐intensity CO2‐laser beam. The parameters selected during laser beam irradiation of the composite determine the relative amounts of molten, heat‐affected or unreacted material. In order to obtain large overall superconducting currents, it is favorable to melt a large fraction of the microcomposite without melting the surrounding Nb sheath. The cooling rate after laser beam irradiation determines the structure and the formation of metastable phases in the resolidifying material. The sequences of the process are simulated by heat flow calculations, which consider laser power, beam diameter, tape velocity, thickness, and microstructure, as well as heat transfer coefficients. From these calculations we could deduce optimum conditions for the laser treatment, leading to Jc values of 105 A cm−2 at 10 T and 104 A cm−2 at 16 T.

1.
C. L.
Thieme
,
S.
Pourrahimi
,
B. B.
Schwartz
, and
S.
Foner
,
Appl. Phys. Lett.
44
,
260
(
1984
).
2.
T.
Takeuchi
,
Y.
Iijima
,
M.
Kosuge
,
T.
Kuvoda
,
M.
Yuyama
, and
K.
Inoue
,
IEEE Trans. Magn.
25
,
2068
(
1989
).
3.
G.
Clemente
,
F.
Habbal
,
D.
Turnbull
, and
J.
Bevk
,
Appl. Phys. Lett.
47
,
640
(
1985
).
4.
K.
Togano
,
H.
Kumakura
,
T.
Takeuchi
, and
K.
Tachikawa
,
IEEE Trans. Magn.
19
,
414
(
1983
).
5.
C. W.
Draper
and
J. M.
Poate
,
Int. Met. Rev.
30
,
85
(
1985
).
6.
C. W.
Draper
and
C. A.
Ewing
,
J. Mat. Sci.
19
,
3815
(
1984
).
7.
S. T.
Sekula
,
J. R.
Thompson
,
G. M.
Beardsley
, and
D. H.
Lowndes
,
J. Appl. Phys.
54
,
6517
(
1983
).
8.
B.
Stritzker
,
B. R.
Appleton
, and
C. W.
White
,
Solid State Commun.
41
,
321
(
1982
).
9.
A. I.
Braginski
,
J. R.
Gavaler
,
R. C.
Kuzuicki
,
B. R.
Appleton
, and
C. W.
White
,
Appl. Phys. Lett.
39
,
277
(
1981
).
10.
T.
Shibata
,
J. F.
Gibbons
,
J.
Kwo
,
R. D.
Feldman
, and
T. H.
Geballe
,
J. Appl. Phys.
52
,
1537
(
1981
).
11.
W. K.
Wang
, and
F.
Spaepen
,
Appl. Phys. Lett.
49
,
295
(
1986
).
12.
R. Bormann, Habilitationsschrift (Gottingen, Germany, 1988).
13.
K.
Pampus
,
K.
Dyrbye
,
B.
Torp
, and
R.
Bormann
,
J. Mat. Res.
4
,
1385
(
1989
).
14.
H.
Kumakura
,
K.
Togano
,
K.
Tachikawa
,
Y.
Yamada
,
S.
Murase
,
M.
Sasaki
, and
E.
Nakamura
,
IEEE Trans. Magn.
23
,
952
(
1987
).
15.
H.
Jones
,
Mat. Sci. Eng.
65
,
145
(
1984
).
16.
H.
Matyja
,
B. C.
Giessen
, and
N. J.
Grant
,
J. Inst. Met.
96
,
30
(
1968
).
17.
E. Schmidt, Einfuhrung in die Technische Thermodynamik (Springer-Verlag, Berlin, 1963).
18.
E. A. Brandes, Smithells Metals Reference Book (Butterworths, London, 1983).
19.
H. W.
Bergmann
,
H. U.
Fritsch
, and
G.
Hunger
,
J. Mat. Sci.
16
,
1935
(
1981
).
20.
T. F.
Broderick
,
A. G.
Jackson
,
H.
Jones
, and
F. H.
Froes
,
Met. Trans. A
16
,
1951
(
1985
).
21.
S. C.
Huang
,
R. P.
Laforce
,
A. M.
Ritter
, and
R. P.
Goehner
,
Met. Trans. A
16
,
1773
(
1985
).
22.
T. W.
Clyne
,
Met. Trans. B
15
,
369
(
1984
).
23.
R. Bormann, D. Y. Yu, R. H. Hammond, A. Marshall, and T. H. Geballe, in Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (North-Holland, New York, 1985), p. 879.
24.
R.
Akihama
,
R. J.
Murphy
, and
S.
Foner
,
IEEE Trans. Magn.
17
,
274
(
1981
).
25.
C. L.
Thieme
,
H.
Zhang
,
J.
Otubo
,
S.
Pourrahimi
,
B. B.
Schwartz
, and
S.
Foner
,
IEEE Trans. Magn.
19
,
567
(
1983
).
26.
D.
Müller
,
M.
Kehlenbeck
,
W.
Schaper
, and
H. C.
Freyhardt
,
Supercond. Sci. Technol.
4
,
365
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.