A nonequilibrium thermodynamic theory for predicting the mechanical behavior of materials beyond the elastic range is formulated. The theory incorporates the idea of a ‘‘concealed’’ parameter α, originally due to Bridgman [Rev. Mod. Phys. 22, 56 (1950)], where the constitutive equations are governed by (a) a thermodynamic potential such as a generalized Gibbs function, G, or Helmholtz free‐energy function, F, each with an explicit dependence on α, and (b) a prescription for α̇, the time rate of change of α, such that α̇ is directly proportional to the negative of Gα or Fα, the partial derivative of G or F with respect to α, respectively. The theory is found to be consistent with (1) the second law of thermodynamics regarding entropy production; (2) the concept of Lyapunov stability at equilibrium; (3) the rule of invariance with respect to a transformation of parameters; and (4) the powerful law of invariance with respect to the Legendre transformation. Significance of the new formulation is discussed by solving a class of one‐dimensional creep and fatigue modeling problems and by comparing the new theory with several similar approaches in the literature.

1.
P. W.
Bridgman
,
Rev. Mod. Phys.
22
,
56
(
1950
).
2.
M. A.
Biot
,
Phys. Rev.
97
,
1463
(
1955
).
3.
R. A.
Schapery
,
J. Appl. Phys.
35
,
1451
(
1964
).
4.
T.
Erber
,
H. G.
Latal
, and
B. N.
Harmon
,
Adv. in Chem. Phys.
20
,
71
(
1969
).
5.
H.
Weinstock
,
T.
Erber
, and
M.
Nisenoff
,
Phys. Rev. B
31
,
1535
(
1985
).
6.
B.
Bernstein
,
E. A.
Kearsley
, and
L. J.
Zapas
,
J. Res. Natl. Bur. Stand.
68B
,
103
(
1964
).
7.
J. T.
Fong
and
J. A.
Simmons
,
Arch. Mech.
24
,
363
(
1972
).
8.
B. Bernstein, Int. J. Eng. Sci. 15, 645 (1977).
9.
For a differential equation of the type dy/dx = f(x,y), the Lipschitz condition requires that f satisfies |f(x,z)−f(x,y)|<C|z−y| for some positive C [see, e.g., E. Hairer, S. P. Norsett,and G. Wanner, Solving Ordinary Differential Equations I—Nonstiff Problems (Springer, New York, 1980), p. 33].
10.
B.
Bernstein
,
J. Elasticity
13
,
411
(
1983
).
11.
J. T. Fong and B. Bernstein, in Proceedings of Symposium on Plasticity in honor of E. H. Lee during 3rd International Conference on Constitutive Laws of Engineering Materials, edited by W. H. Yang (AM, Ann Arbor, MI, 1991), p. 163;
also in
ASME Trans. J. Pressure Vessel Technol.
113
,
174
(
1991
).
12.
J. B.
Conway
and
J. T.
Berling
,
Met. Trans.
1
,
324
(
1970
).
13.
S. S. Manson, G. R. Halford, and M. H. Hirschberg, in Proceedings of ASME Symposium on Design for Elevated Temperature Environment, edited by S. Y. Zamrik (Am. Soc. Mech. Eng., NY, 1971), p. 12.
14.
D. K. Kahaner and W. E. Anderson, Volksgrapher: A Fortran Plotting Package User’s Guide, Version 3.0, National Institute of Standards and Technology Report NISTIR 90–4238 (National Technical Information Service, Springfield, VA, 1990).
15.
R. W.
Swindeman
and
D. A.
Douglas
,
ASME Trans. J. Basic Eng.
81
,
203
(
1959
).
16.
J. T.
Fong
,
ASME Trans. J. Pressure Vessel. Technol.
97
,
214
(
1975
).
17.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1958
).
18.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
31
,
688
(
1959
).
19.
D. W.
Hoffman
and
J. W.
Cahn
,
Surf. Science
31
,
368
(
1972
).
20.
J. W.
Cahn
and
D. W.
Hoffman
,
Acta Metallurgica
22
,
1205
(
1974
).
21.
J.
Kratochvil
and
O. W.
Dillon
, Jr.
,
J. Appl. Phys.
40
,
3207
(
1969
).
22.
E. W.
Hart
,
Acta Metallurgica
18
,
599
(
1970
).
23.
E. W.
Hart
,
ASME Trans. J. Eng. Mater. Technol.
98
,
193
(
1976
).
24.
D. J.
Bammann
,
Int. J. Eng. Sci.
22
,
1041
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.