An ensemble Monte Carlo simulation of electron transport in bulk ZnS at different electric fields is presented. Scattering mechanisms associated with polar optical phonons, acoustic phonons (through deformation potential coupling), intervalley scattering, and impurities (neutral and ionized), are included in a nonparabolic multivalley model. Simulation indicates that the polar optical phonon and intervalley scattering mechanisms are dominant, whereas neutral and ionized impurity scattering are of no significance in determining the high‐field electron transport in bulk ZnS. The simulated results show that approximately 26% of the electrons possess total energies exceeding 2.1 eV, the threshold energy for Mn impact excitation, at an electric field of 1 MV/cm. This fraction of electrons with energies exceeding 2.1 eV is estimated to be 50% and 65% at electric fields of 1.5 and 2.0 MV/cm, respectively. Transient overshoot effects are found to be of negligible importance in the operation of alternating‐current thin‐film electroluminescent (ACTFEL) devices. The steady‐state electron distribution at high fields is sufficiently energetic to explain the observed efficiency of ACTFEL devices. No evidence for a significant electron population with energies in excess of 5 eV is found, even during the brief nonstationary regime, and thus very few carriers possess sufficient energy to induce band‐to‐band impact ionization.
Skip Nav Destination
Article navigation
1 April 1993
Research Article|
April 01 1993
Monte Carlo simulation of electron transport in alternating‐current thin‐film electroluminescent devices
K. Bhattacharyya;
K. Bhattacharyya
Department of Electrical and Computer Engineering, Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331‐3211
Search for other works by this author on:
S. M. Goodnick;
S. M. Goodnick
Department of Electrical and Computer Engineering, Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331‐3211
Search for other works by this author on:
J. F. Wager
J. F. Wager
Department of Electrical and Computer Engineering, Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331‐3211
Search for other works by this author on:
J. Appl. Phys. 73, 3390–3395 (1993)
Article history
Received:
September 08 1992
Accepted:
December 14 1992
Citation
K. Bhattacharyya, S. M. Goodnick, J. F. Wager; Monte Carlo simulation of electron transport in alternating‐current thin‐film electroluminescent devices. J. Appl. Phys. 1 April 1993; 73 (7): 3390–3395. https://doi.org/10.1063/1.352938
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00