Band structures of nini doping superlattices are found using a self‐consistent calculation based on the envelope function formalism. The modulation potentials, the charge density distributions, the dispersion relationships, and the occupation of the subbands in the nini superlattices are computed and their dependence on temperature and the structural parameters of the superlattices are studied. It is found that the modulation potentials of nini doping superlattices are weak, and quantum effects are, therefore, also weak. The density of states in nini superlattices can be adjusted by varying the structural parameters of the superlattices. As a result, the nini doping superlattices behave like uniformly doped semiconductors with an adjustable density of states. The density of states is found to be temperature dependent. Electron mobilities of the nini doping superlattices are also computed. It is found that both impurity scattering processes that are observed in uniform lightly doped semiconductor and heavily doped semiconductor can coexist in the nini doping superlattices.

1.
L.
Esaki
and
R.
Tsu
,
IBM J. Res. Dev.
14
,
61
(
1970
).
2.
R. F.
Kazarinov
and
R. A.
Suris
,
Sov. Phys. Semicond.
5
,
707
(
1971
).
3.
R. F.
Kazarinov
and
V. Y.
Shmarsev
,
Sov. Phys. Semicond.
5
,
710
(
1971
).
4.
V. I.
Stafeev
,
Sov. Phys. Semicond.
5
,
359
(
1971
).
5.
M. I.
Ovsyannikov
,
Y. A.
Romanov
,
V. N.
Shabanov
, and
R. G.
Loginova
,
Sov. Phys. Semicond.
4
,
1919
(
1971
).
6.
M. I. Ovsyannikov, Y. A. Romanov, and V. N. Shabanov, in Proceedings of the International Conference on the Physics and Chemistry of Semiconductor Heterjunctions and Layer Structures, edited by G. Szigeti et al., No. VI (Akademiai Kiado, Budapest, 1971), p. 205.
7.
G. H.
Dohler
,
Phys. Status Solidi B
52
,
79
(
1972
).
8.
G. H.
Dohler
,
Phys. Status Solidi B
52
,
533
(
1972
).
9.
G. H. Dohler, The Physics and Applications of n-i-p-i Doping Superlattices, CRC Reviews in Solid State and Materials Science (Chemical Rubber, Cleveland/Boca Raton, 1987), Vol. 13, p. 97.
10.
P.
Ruden
and
G. H.
Dohler
,
Phys. Rev. B
27
,
3538
(
1983
).
11.
P.
Ruden
and
G. H.
Dohler
,
Phys. Rev. B
27
,
3547
(
1983
).
12.
G. H.
Dohler
and
P.
Ruden
,
Phys. Rev. B
30
,
5932
(
1984
).
13.
K. Ploog, in Molecular Beam Epitaxy and Heterostructures, edited by L. L. Chang and K. Ploog (Martinus Nijhoff, 1985), p. 533.
14.
G. H.
Dohler
,
H.
Kunzel
,
D.
Olego
,
K.
Ploog
,
P.
Ruden
,
H. J.
Stolz
, and
G.
Abstreiter
,
Phys. Rev. Lett.
47
,
864
(
1981
).
15.
H.
Jung
,
G. H.
Dohler
,
H.
Kunzel
,
K.
Ploog
,
P.
Ruden
, and
H. J.
Stolz
,
Solid State Commun.
43
,
291
(
1982
).
16.
G. H.
Dohler
,
H.
Kunzel
, and
K.
Ploog
,
Phys. Rev. B
25
,
2616
(
1982
).
17.
H.
Kunzel
,
G. H.
Dohler
,
P.
Ruden
, and
K.
Ploog
,
Appl. Phys. Lett.
41
,
852
(
1983
).
18.
H.
Jung
,
G. H.
Dohler
,
E. O.
Gobel
, and
K.
Ploog
,
Appl. Phys. Lett.
43
,
40
(
1983
).
19.
G. H.
Dohler
,
G.
Fasol
,
R. S.
Low
,
J. N.
Miller
, and
K.
Ploog
,
Solid State Commun.
43
,
563
(
1986
).
20.
K.
Kohler
,
G. H.
Dohler
,
J. N.
Miller
, and
K.
Ploog
,
Solid State Commun.
58
,
769
(
1986
).
21.
G. H.
Dohler
,
H.
Kunzel
, and
K.
Ploog
,
Phys. Rev. B
25
,
2516
(
1982
).
22.
T. B.
Simpson
,
C. A.
Pennise
,
B. E.
Gordon
,
J. E.
Anthony
, and
T. R.
AuCoin
,
Appl. Phys. Lett.
49
,
590
(
1986
).
23.
C. J. C.
Hasnain
,
G.
Hasnain
,
G. H.
Dohler
,
N. M.
Johnson
,
J. N.
Miller
,
J. R.
Whinnery
, and
A.
Dieres
,
SPIE Quantum Well Superlative Phys.
792
,
45
(
1987
).
24.
H.
Kobayashi
,
Y.
Yamanchi
,
H.
Ando
, and
K.
Takahei
,
J. Appl. Phys.
64
,
3641
(
1988
).
25.
H. S.
Cho
and
P. R.
Prucnal
,
J. Vac. Sci. Technol. B
7
,
1363
(
1989
).
26.
M. W.
Prairie
and
R. M.
Kolbas
,
Superlattices Microstruct.
7
,
269
(
1990
).
27.
M. H.
Degani
,
J. Appl. Phys.
70
,
4362
(
1991
).
28.
F.
Stern
and
S.
Das Sarama
,
Phys. Rev. B
30
,
840
(
1984
).
29.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev.
13
,
4274
(
1976
).
30.
E. F.
Schubert
,
J. E.
Cunningham
, and
W. T.
Tsang
,
Phys. Rev. B
36
,
1348
(
1987
).
31.
C. M. Tan, Ph.D. dissertation, University of Toronto, 1992.
32.
J. Y.
Lin
and
H. X.
Jiang
,
Phys. Rev. B
40
,
5561
(
1989
).
33.
R. A. Smith, Wave Mechanics of Crystalline Solids (Wiley, New York, 1961).
34.
A.
Casel
and
H.
Jorke
,
J. Appl. Phys.
67
,
1740
(
1990
).
35.
A. Yariv, Theory and Applications of Quantum Mechanics (Wiley, New York, 1982).
36.
D.
Chattopadhyay
and
H. J.
Queisser
,
Rev. Mod. Phys.
53
,
745
(
1981
).
37.
I. Y.
Yanchev
,
B. G.
Arnaudov
, and
S. K.
Evtimova
,
J. Phys. C
12
,
L765
(
1979
).
38.
E. J.
Moore
,
Phys. Rev.
160
,
618
(
1967
).
39.
K. Sumino, in Defects and Properties of Semiconductors: Defect Engineering, edited by J. Chikawa, K. Sumino, and K. Wada (KTK Scientific, Tokyo, 1987), p. 3.
40.
K. Sumino, in Point and Extended Defects in Semiconductors, edited by G. Benedek, A. Cavallinf, and W, Schroter (Plenum, New York, 1989), p. 77.
This content is only available via PDF.
You do not currently have access to this content.