Hydrogen nuclear magnetic resonance (NMR) was used to probe defect reactions in fused silica during 193 nm ultraviolet irradiation and thermal treatment. Hydrogen concentration and Carr–Purcell measurements indicate that the majority of hydrogen atoms are isolated and do not segregate or evolve from the fused silica during annealing or irradiation. Previously, NMR spin‐lattice relaxation measurements have revealed that a small fraction of hydrogen in fused silica exists as centers that undergo molecular motion and are consumed during annealing. Here, a detailed analysis of the NMR spin‐lattice relaxation behavior is used to support the identification of this center as a pair of adjacent silanol groups. These silanol pairs react during annealing to form a strained bond, thus increasing the susceptibility of fused silica to E′ formation. Excimer laser irradiation, like thermal treatment, is shown to directly reduce the number of relaxation centers in the material. The measured dependence of spin‐lattice relaxation as a function of irradiation for identically prepared samples is consistent with silanol pair center consumption by a two‐photon process.

1.
M.
Rothschild
and
D. J.
Ehrlich
,
J. Vac. Sci. Technol. B
6
,
1
(
1988
).
2.
R. S.
Taylor
,
K. E.
Leopold
,
R. K.
Brimacombe
, and
S.
Mihailov
,
Appl. Opt.
27
,
3124
(
1988
).
3.
C.
Fiori
and
R. A. B.
Devine
,
Phys. Rev. B
33
,
2972
(
1986
).
4.
T. E.
Tsai
,
D. L.
Griscom
, and
E. J.
Friebele
,
Phys. Rev. Lett.
22
,
444
(
1988
).
5.
M.
Rothschild
,
D. J.
Ehrlich
, and
D. C.
Shaver
,
Appl. Phys. Lett.
55
,
1276
(
1989
).
6.
W. P.
Leung
,
M.
Kulkarni
,
D.
Krajnovich
, and
A. C.
Tam
,
Appl. Phys. Lett.
58
,
551
(
1991
).
7.
N.
Leclerc
,
C.
Pfleiderer
,
H.
Hitzler
,
J.
Wolfrum
,
K.-O.
Greulich
,
S.
Thomas
,
H.
Fabian
,
R.
Takke
, and
W.
Englisch
,
Opt. Lett.
16
,
940
(
1991
).
8.
D. L.
Griscom
,
SPIE Proc.
541
,
38
(
1985
).
9.
R. A. Weeks and E. Sonder, in Paramagnetic Resonance II, edited by W. Low (Academic, New York, 1963), p. 869.
10.
D. L.
Griscom
,
E. J.
Friebele
, and
G. H.
Sigel
, Jr.
,
Solid State Commun.
15
,
479
(
1974
).
11.
R. A.
Weeks
and
C. M.
Nelson
,
J. Appl. Phys.
31
,
1555
(
1960
).
12.
D. L.
Griscom
,
J. Non-Cryst. Solids
73
,
51
(
1985
).
13.
R. A.
Weeks
,
J. Appl. Phys.
27
,
1376
(
1956
).
14.
J. H.
Stathis
and
M. A.
Kastner
,
Phys. Rev. B
29
,
7079
(
1984
).
15.
R. A.
Weeks
and
E.
Lell
,
J. Appl. Phys.
35
,
1932
(
1964
).
16.
A. J.
Moulson
and
J. P.
Roberts
,
Trans. Faraday Soc.
57
,
1208
(
1961
).
17.
G. E.
Walrafen
and
S. R.
Samanta
,
J. Chem. Phys.
69
,
493
(
1978
).
18.
R. W.
Lee
,
Phys. Chem. Glasses
5
,
35
(
1964
).
19.
K. L.
Brower
,
P. M.
Lenahan
, and
P. V.
Dressendorfer
,
Appl. Phys. Lett.
41
,
251
(
1982
).
20.
D. L.
Griscom
,
M.
Stapelbroeck
, and
E. J.
Friebele
,
J. Chem. Phys.
78
,
1638
(
1983
).
21.
D. H.
Levy
,
K. K.
Gleason
,
M.
Rothschild
,
J. H. C.
Sedlacek
, and
R.
Takke
,
Appl. Phys. Lett.
60
,
1667
(
1992
).
22.
H. Y.
Carr
and
E. M.
Purcell
,
Phys. Rev.
94
,
630
(
1954
).
23.
T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods (Academic, New York, 1971), p. 20.
24.
A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961), p. 128.
25.
G. E.
Walrafen
,
J. Chem. Phys.
62
,
297
(
1975
).
26.
D. E.
Woessner
,
B. S.
Snowden
, Jr.
, and
G. H.
Meyer
,
J. Chem. Phys.
50
,
719
(
1969
).
27.
R. T. Bailey, A. M. North, and R. A. Pethrick, Molecular Motion in High Polymers (Oxford University Press, Oxford, 1981), p. 80.
28.
R. A. B.
Devine
and
J.
Arndt
,
Phys. Rev. B
39
,
5132
(
1989
).
29.
T. M.
Duncan
and
C.
Dybowski
,
Surf. Sci. Rep.
1
,
157
(
1981
).
30.
M. S.
Conradi
and
R. E.
Norberg
,
Phys. Rev. B
24
,
2285
(
1981
).
31.
M. Mehring, Principles of High Resolution NMR in Solids (Springer, Berlin, 1983), p. 57.
32.
M.
Stapelbroeck
,
D. L.
Griscom
,
E. J.
Friebele
, and
G. H.
Sigel
, Jr.
,
J. Non-Cryst. Solids
32
,
313
(
1979
).
33.
R. S. Taylor, K. E. Leopold, and R. K. Brimacombe, in Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, November 2–4 (IEEE, New York, 1988), p. 228.
34.
M.
Rothschild
,
D. J.
Ehrlich
, and
D. C.
Shaver
,
Microelectron. Eng.
11
,
167
(
1990
).
35.
M. J. R.
Hoch
and
E. C.
Reynhardt
,
Phys. Rev. B
37
,
9222
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.