Epitaxial Co has been grown on GaAs(001) and studied by both low‐energy electron diffraction (LEED) and reflection high‐energy electron diffraction (RHEED), and by the magneto‐optic Kerr effect (MOKE) and polarized neutron reflection (PNR). Three samples were fabricated using different growth procedures: (1) ‘‘interrupted’’ growth (including an anneal); (2) and (3) continuous growth of similar thicknesses. For sample 1, RHEED patterns indicate an initial growth in the bcc phase followed by a relaxation into a distorted single phase at completion of growth, whereas samples 2 and 3 showed a multicrystalline structure after growth. LEED patterns were used to check the existence of the 2×4 reconstruction patterns before growth, but no LEED patterns could be obtained after more than 2 Å Co was deposited, in contrast to the RHEED patterns which remained visible throughout the growth. Structural analysis of the completed films indicates the formation of a ∼10 Å CoO layer on the Co/air interface, and gives thicknesses for magnetic material of (1) 30 Å and (2) 80 Å. Sample 1 showed a dominant fourfold magnetic anisotropy with the easy axis parallel to the (100) direction and with a strength 2K4/M of ∼0.5 kOe, smaller in magnitude than that reported for bcc films on GaAs(110) but along the same axis [G. A. Prinz etal., J. Appl. Phys. 57, 3672 (1985)]. However, samples 2 and 3 showed only a large uniaxial anisotropy along the (110) direction of strength 2K1/M of ∼1.5 kOe and ∼2.5 kOe, respectively, similar in magnitude to those previously observed [G. A. Prinz etal., J. Appl. Phys. 57, 3676 (1985)]. We attribute the origin of the contrasting magnetic anisotropy behavior observed to the differences in final structure.

1.
J. J.
Krebs
,
B. T.
Jonker
, and
G. A.
Prinz
,
J. Appl. Phys.
61
,
2596
(
1987
).
2.
M. N.
Baibich
,
J. M.
Broto
,
A.
Fert
,
F.
Nguyen Van Dau
,
P.
Etienne
,
G.
Creuzet
,
A.
Friedrich
, and
J.
Chazelas
,
Phys. Rev. Lett.
61
,
2472
(
1988
).
3.
G. A.
Prinz
,
Phys. Rev. Lett.
54
,
1051
(
1985
).
4.
F.
Xu
,
J. J.
Joyce
,
M. W.
Ruckmann
,
H.-W.
Chen
,
F.
Boscherini
,
D. M.
Hill
,
S. A.
Chambers
, and
J. H.
Weaver
,
Phys. Rev. B
35
,
2375
(
1987
).
5.
C. J.
Palmstro/m
,
C. C.
Chang
,
A.
Yu
,
G. J.
Galvin
, and
J. W.
Mayer
,
J. Appl. Phys.
62
,
3755
(
1987
).
6.
J. A. C.
Bland
,
M. J.
Padgett
,
R. J.
Butcher
, and
N.
Bett
,
J. Phys. E
22
,
308
(
1989
).
7.
G. A.
Prinz
et al.,
J. Appl. Phys.
57
,
3672
(
1985
).
8.
G. A.
Prinz
,
G. T.
Rado
, and
J. J.
Krebs
,
J. Appl. Phys.
53
,
2087
(
1982
).
9.
J. A. C.
Bland
,
R. D.
Bateson
,
P. C.
Riedi
,
R. G.
Graham
,
H. J.
Lauter
,
J.
Penfold
, and
C.
Shackleton
,
J. Appl. Phys.
69
,
4989
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.