Pseudosparks, and the back‐lighted thyratron (BLT) in particular, are finding increasing application as pulse power switches. An attractive feature of BLTs is that high current densities (≥ tens of kA cm−2) can be sustained from metal cathodes without auxiliary heating. The source of this current is believed to be electric‐field‐enhanced thermionic emission resulting from heating of the cathode by ion bombardment during commutation which ultimately melts the surface of the cathode. It is proposed that a photon‐driven ionization mechanism in the interelectrode gap of the BLT is responsible for initiating the observed patterns of cathode surface melting and electron emission. A 21/2‐dimensional computer model is presented that incorporates a photo‐induced ionization mechanism to spread the plasma into the interelectrode gap. It predicts a melting of the cathode in a pattern similar to that which is experimentally observed, and predicts a rate of field‐enhanced thermionic electron emission that is sufficient to explain the high BLT conduction current density. In the absence of these mechanisms, the model does not predict the observed large‐area melting of the face of the cathode. The cathode heating rate during the BLT switching phase is maximum for operating parameters that are very close to the limit for which the switch will close (that is, the smallest possible pressure‐electrode spacing product and smallest possible electrode holes).

1.
W.
Hartmann
,
V.
Dominic
,
G. F.
Kirkman
, and
M. A.
Gundersen
,
J. Appl. Phys.
65
,
4388
(
1989
).
2.
W.
Hartmann
,
V.
Dominic
,
G. F.
Kirkman
, and
M. A.
Gundersen
,
Appl. Phys. Lett.
53
,
1699
(
1988
).
3.
H. R.
Bauer
,
G.
Kirkman
, and
M. A.
Gundersen
,
IEEE Trans. Plasma Sci.
PS-18
,
237
(
1990
).
4.
A collection of papers describing pseudosparks can be found in M. A. Gundersen and G. Schaefer, Physics and Applications of Pseudosparks, NATO ASI Series B: Physics, Vol. 219 (Plenum, New York, 1990).
5.
W.
Benker
,
J.
Christiansen
,
K.
Frank
,
H.
Gundel
,
W.
Hartmann
,
T.
Redel
, and
M.
Stetter
,
IEEE Trans. Plasma Sci.
PS-17
,
754
(
1989
).
6.
G. Kirkman-Amemiya, N. Reinhardt, M. S. Choi, and M. A. Gundersen, in Digest of Technical Papers of the Eighth IEEE International Pulsed Power Conference, edited by K. Prestwich and R. White (IEEE, New York, 1991), pp. 482–485.
7.
Hoyoung
Pak
and
M. J.
Kushner
,
Appl. Phys. Lett.
57
,
1619
(
1990
).
8.
J.-P.
Boeuf
and
L. C.
Pitchford
,
IEEE Trans. Plasma Sci.
PS-19
,
286
(
1991
).
9.
Hoyoung
Pak
and
M. J.
Kushner
,
J. Appl. Phys.
66
,
2325
(
1989
).
10.
H. Pak, Ph.D. thesis, University of Illinois, 1991.
11.
K.
Mittag
,
P.
Choi
, and
Y.
Kaufman
,
Nucl. Instrum. Methods. Phys. Res. A
292
,
465
(
1990
).
12.
M. S.
Barnes
,
T. J.
Colter
, and
M. E.
Elta
,
J. Appl. Phys.
61
,
81
(
1987
).
13.
Y. S. Touloukian, in A Physicist’s Desk Reference, edited by H. L. Anderson (AIP, New York, 1989), p. 336.
14.
R. W. Weast, Handbook of Chemistry and Physics, 49th ed. (Chemical Rubber Co., Cleveland, OH, 1968).
15.
F. A. Maxfield and R. R. Benedict, Theory of Gaseous Conduction and Electronics (McGraw-Hill, New York, 1941), p. 148.
16.
W. P. Dyke and W. W. Dolan, in Advances in Electronics and Electron Physics, edited by L. Marton (Academic, New York, 1956), p. 89.
17.
T. J. Sommerer, H. Pak, and M. J. Kushner, in 44th Annual Gaseous Electronics Conference, Albuquerque, NM, 1991, paper PC-7.
18.
F. R.
Schwirzke
,
IEEE Trans. Plasma Sci.
19
,
690
(
1991
).
19.
J.
Halbritter
,
IEEE Trans. Electr. Insul.
EI-8
,
253
(
1983
).
20.
J.
Halbritter
,
IEEE Trans. Electr. Insul.
EI-20
,
671
(
1985
).
21.
L. C.
Lee
,
R. W.
Carlson
, and
D. L.
Judge
,
J. Quant. Spectrosc. Radiat. Transfer
16
,
873
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.