We report a study of the oxidation of TiN. In previous work, the oxidation kinetics for 350–450 °C were reported and an initiation time prior to fast oxidation was identified. In this study, x‐ray photoelectron spectroscopy was used to investigate the oxidation mechanisms at 350 °C during this initiation time period. The oxide thickness increases slowly with oxidation time and the film appears to change from an amorphous TiO2 layer to a crystalline TiO2 layer. Spectral features which are intermediate between TiO2 and TiN are reported and a model involving grain boundary oxidation is proposed. One of the thicker oxides studied was annealed in vacuum to 700 °C. Following oxidation, some of the capping oxide and much of the intermediate material is no longer in the analysis volume and we suggest that the oxygen and nitrogen is being dissolved into the bulk in much the same way that nonevaporable getters are activated before use.

1.
L. E. Toth, Transition Metal Carbides and Nitrides (Academic, New York, 1971), Vol. 7.
2.
W. S. Williams, in Progress in Solid State Chemistry, edited by H. Reiss and J. D. Mc Calden (Pergamon, New York, 1971), Vol. 6.
3.
J. P.
Bucher
,
K. P.
Ackermann
, and
F. W.
Buschor
,
Thin Solid Films
122
,
63
(
1984
), and references therein.
4.
J. S.
Cho
,
S. W.
Nam
, and
J. S.
Chun
,
J. Mater. Sci.
17
,
2495
(
1982
), and references therein.
5.
H.
Joswig
,
A.
Kohlhase
, and
P.
Hucher
,
Thin Solid Films
175
,
17
(
1989
).
6.
S.
Kanamori
,
Thin Solid Films
136
,
195
(
1986
).
7.
N.
Kumar
,
K.
Pourrezaei
,
B.
Lee
, and
E. C.
Douglas
,
Thin Solid Films
164
,
417
(
1988
).
8.
C. Y.
Ting
and
M.
Wittmer
,
Thin Solid Films
96
,
327
(
1982
).
9.
I.
Suni
,
M.
Blomberg
, and
J.
Saarilahti
,
J. Vac. Sci. Technol. A
3
,
2233
(
1985
).
10.
N.
Yokoyama
,
K.
Hinode
, and
Y.
Homma
,
J. Electrochem. Soc.
136
,
882
(
1989
).
11.
M.
Wittmer
and
H.
Melchior
,
Thin Solid Films
93
,
397
(
1982
).
12.
N.
Kumar
,
J. T.
McGinn
,
K.
Pourrezaei
,
B.
Lee
, and
E. C.
Douglas
,
J. Vac. Sci. Technol. A
6
,
1602
(
1988
).
13.
M.
Mandl
,
H.
Hoffman
, and
P.
Kucher
,
J. Appl. Phys.
68
,
2127
(
1990
).
14.
M.
Wittmer
,
J.
Noser
, and
H.
Melchior
,
J. Appl. Phys.
52
,
6659
(
1981
).
15.
C.
Ernsberger
,
J.
Nickerson
,
T.
Smith
,
A. E.
Miller
, and
D.
Banks
,
J. Vac. Sci. Technol. A
4
,
2784
(
1986
).
16.
I.
Montero
,
C.
Jimenez
, and
J.
Perriere
,
Surf. Sci.
251
,
1038
(
1991
).
17.
H. Z.
Wu
,
T. C.
Cho
,
A.
Misra
,
D. R.
Anderson
, and
J. K.
Lampert
,
Thin Solid Films
191
,
55
(
1990
).
18.
I.
Suni
,
D.
Sigurd
,
K. T.
Ho
, and
M-A.
Nicolet
,
J. Electrochem. Soc.
130
,
1210
(
1983
).
19.
L.
Porte
,
L.
Roux
, and
J.
Hanus
,
Phys. Rev. B
28
,
3214
(
1983
).
20.
M. J.
Vasile
,
A. B.
Emerson
, and
F. A.
Baiocchi
,
J. Vac. Sci. Technol. A
8
,
99
(
1990
).
21.
H. G.
Tompkins
,
J. Appl. Phys.
70
,
3876
(
1991
).
22.
H. G.
Tompkins
,
J. Appl. Phys.
71
,
980
(
1992
).
23.
M. P.
Seah
and
W. A.
Dench
,
Surf. and Int. Anal.
1
,
2
(
1979
).
24.
Perkin-Elmer ESCA Manual, Version 3.0 (Perkin-Elmer, Eden Prairie, MN, 1991).
25.
saes® getters Product Brochure, “St101® non-evaporable getters,” (1991).
26.
N. D.
Shinn
and
K. L.
Tsang
,
J. Vac. Sci. Technol. A
9
,
1558
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.