Ion beam assisted evaporation was used to deposit cubic and hexagonal boron nitride thin films. Boron was evaporated and bombardment was by argon and nitrogen ions. The effect of preparation conditions on the resulting phase was studied, and the relationship between the phase and the energy and momentum transferred into the film through ion bombardment was examined. It is shown that for a given temperature, the controlling factor in the resulting thin film phase is the momentum transferred into the film per depositing boron atom. At 300–400 °C a sharp threshold value of momentum‐per‐atom exists below which films are hexagonal and above which they are cubic. For 400 °C this threshold occurred at 200 (eV×amu)1/2 which is equal to 3.3×10−21 m kg s−1. Depositions performed using krypton and xenon instead of argon as the second bombarding gas confirmed this momentum‐per‐atom value. A second threshold was also observed, which was bombarding species dependent, above which either complete resputtering of the deposited material or reversion to the hexagonal phase occurred. Cubic boron nitride deposition was seen to occur in a window of momentum‐per‐atom values between these two thresholds. Using this information it was possible to grow cubic boron nitride using only nitrogen bombardment, although the window of momentum‐per‐atom values for nitrogen is very narrow. The effect of substrate temperature was studied, and it was found to be difficult to grow predominantly cubic phase films below 300–400 °C. The relationship between intrinsic stress and phase of the films is also discussed. A diagram is presented showing film phase as a function of bombardment, substrate temperature, and system chemistry. The parameter of momentum‐per‐atom is shown to combine into a single value the variables of ion beam assisted deposition: deposition rate, ion energy, ion flux, and ion species. It is suggested that, in general, for properties affected by ion bombardment the momentum‐per‐atom transferred into the film is the controlling factor. The results are shown to support momentum transfer as the dominant process in cubic boron nitride thin film formation.

1.
H.
Saitoh
,
T.
Hirose
,
H.
Matsui
,
Y.
Hirotsu
, and
Y.
Ichinose
,
Surf. Coat. Technol.
39/40
,
265
(
1989
).
2.
S.
Shanfield
and
R.
Wolfson
,
J. Vac. Sci. Technol. A
1
,
323
(
1983
).
3.
M.
Satou
and
F.
Fujimoto
,
Jpn. J. Appl. Phys.
22
,
L171
(
1983
).
4.
F. Shimokawa, H. Kuwano, and K. Nagai, Proc. 9th Symp. on ISIAT 85, Tokyo, 1985.
5.
T.
Ikeda
,
Y.
Kawate
, and
Y.
Hirai
,
J. Vac. Sci. Technol. A
8
,
3168
(
1990
).
6.
V. N.
Gashtold
,
S. A.
Kutolin
,
L. M.
Shakarian
,
L. F.
Belova
, and
G. M.
Komarova
,
Elektronnaya Tekhnika, Series
12
, No. 4,
58
(
1970
).
7.
C.
Weissmantel
,
K.
Bewilogua
,
D.
Dietrich
,
H.-J.
Erler
,
H.-J.
Hinneberg
,
S.
Klose
,
W.
Nowick
, and
G.
Reisse
,
Thin Solid Films
72
,
19
(
1980
).
8.
K.
Inagawa
,
K.
Watanabe
,
H.
Ohsone
,
K.
Saitoh
, and
A.
Itoh
,
J. Vac. Sci. Technol. A
5
,
2696
(
1987
).
9.
Y.
Andoh
,
S.
Nishiyama
,
H.
Kirimura
,
T.
Mikami
,
K.
Ogata
, and
F.
Fujimoto
,
Nucl. Instrum. Methods B
56/60
,
276
(
1991
).
10.
M.
Murakawa
and
S.
Watanabe
,
Surf. Coat Technol.
43/44
,
128
(
1990
).
11.
N.
Savvides
,
Thin Solid Films
163
,
13
(
1988
).
12.
D.
Turnbull
,
Metall. Trans. A
12
,
695
(
1981
).
13.
N.
Sawides
,
J. Appl. Phys.
62
,
600
(
1987
).
14.
B. O.
Johansson
,
H. T. G.
Hentzell
,
J. M. E.
Harper
, and
J. J.
Cuomo
,
J. Mater. Res.
1
,
442
(
1986
).
15.
D. J.
Kester
and
R.
Messier
,
Mater. Res. Soc. Symp. Proc.
235
,
721
(
1992
).
16.
J. M. E.
Harper
,
J. J.
Cuomo
, and
H. T. G.
Hentzell
,
Appl. Phys. Lett.
43
,
547
(
1983
).
17.
G. K.
Hubler
,
D.
Van Vechten
,
E. P.
Donovan
, and
R. A.
Kant
,
Mater. Res. Soc. Symp. Proc.
128
,
55
(
1989
).
18.
J. D.
Targove
,
L. J.
Lingg
,
J. P.
Lehan
,
C. K.
Hwangbo
,
H. A.
Macleod
,
J. A.
Leavitt
, and
L. C.
McIntyre
, Jr.
,
Mater. Res. Soc. Symp. Proc.
93
,
311
(
1987
).
19.
J. E. Yehoda, Ph.D. thesis, The Pennsylvania State University, 1988.
20.
Y.
Cong
,
R. W.
Collins
,
R.
Messier
,
K.
Vedam
,
G. F.
Epps
, and
H.
Windischmann
,
J. Vac. Sci. Technol. A
9
,
1123
(
1991
).
21.
J. M. E. Harper, J. J. Cuomo, R. J. Gambino, and H. R. Kaufman, in Ion Bombardment Modification of Surfaces, edited by Orlando Auciello and Roger Kelly (Elsevier, Amsterdam, 1984), p. 154.
22.
J. D.
Targove
and
H. A.
Macleod
,
Appl. Opt.
27
,
3779
(
1988
).
23.
D. W.
Hoffman
and
M. R.
Gaerttner
,
J. Vac. Sci. Technol.
17
,
425
(
1980
).
24.
H. A.
Macleod
,
J. Vac. Sci. Technol. A
4
,
418
(
1986
).
25.
H.
Windischmann
,
J. Appl. Phys.
62
,
1800
(
1987
).
26.
H.
Windischmann
,
J. Vac. Sci. Technol. A
9
,
2431
(
1991
).
27.
C. K.
Hwangbo
,
L. J.
Lingg
,
J. P.
Lehan
,
H. A.
Macleod
,
J. L.
Makous
, and
S. Y.
Kim
,
Appl. Opt.
28
,
2769
(
1989
).
28.
D.
Van Vechten
,
G. K.
Hubler
, and
E. P.
Donovan
,
Vacuum
36
,
841
(
1986
).
29.
E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964), p. 244.
30.
S. C. Brown, Basic Data of Plasma Physics, 1966, 2nd ed. (M.I.T. Press, Cambridge, MA, 1967), pp. 47–77.
31.
R. A. Roy and D. S. Yee, in Handbook of Ion Beam Processing Technology, edited by J. J. Cuomo, S. M. Rossnagel, and H. R. Kaufman (Noyes, Park Ridge, NJ, 1989).
32.
W. D.
Westwood
,
MRS Bulletin
14
,
46
(
1988
).
33.
P.
Sigmund
,
Phys. Rev.
184
,
383
(
1969
).
34.
M.
Murakawa
,
S.
Watanabe
, and
S.
Miyake
,
Diamond Films and Technol.
1
,
55
(
1991
).
35.
M.
Itoh
,
M.
Hori
, and
S.
Nadahara
,
J. Vac. Sci. Technol. B
9
,
149
(
1991
).
36.
B.
Window
,
F.
Sharpies
, and
N.
Sawides
,
J. Vac. Sci. Technol. A
6
,
2333
(
1988
).
37.
F. Seitz and J. S. Koehler, in Progress in Solid State Physics, Vol. 2 (Academic, New York, 1957), p. 30.
38.
K.-H.
Müller
,
Phys. Rev. B
35
,
7906
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.