We have measured the initial silane and polysilane product yields from disilane decomposition in rf and dc discharges, at 25 and 250 °C and 20 Pa (0.15 Torr) pressure as typically used for a‐Si:H film deposition. From analyses of these yields we conclude that the initial Si2H6 fragmentation pattern is SiH3+SiH2+H (91±9%) and H3SiSiH+2H (9±9%), that the primary product of the H+Si2H6 reaction is SiH4+SiH3, and that SiH3 is the dominant radical causing film growth. We have measured a radical‐surface reaction probability of 0.34±0.03, very similar to that observed for SiH3 in SiH4 discharges. We report a spatial distribution of emission indicative of a γ‐regime discharge. From deposition on glass fibers strung between the electrodes, we find that highly strained a‐Si:H film is produced everywhere except on or near the electrodes, suggesting that energetic ion impact is necessary to yield useful films in disilane discharges.

1.
I.
Sakata
,
S.
Okazaki
,
M.
Yamanaka
, and
Y.
Hayashi
,
Jpn. J. Appl. Phys.
24
,
L428
(
1985
).
2.
W. Luft, High-Rate Deposition of Hydrogenated Amorphous Silicon Films and Devices, SERI/TR211-3052 (Solar Energy Research Institute, Golden, CO, 1987).
3.
D. S. Shen and P. K. Bhat, Amorphous Silicon Solar Cells Prepared at High Deposition Rates, SERI/TP-211-3949 (Solar Energy Research Institute, Golden, CO, 1990).
4.
H. J. Wiesmann, Hydrogenated Amorphous Silicon Films Prepared by Glow Discharge of Disilane, SERI/STR-211-3620 (Solar Energy Research Institute, Golden, CO, 1990).
5.
J. R.
Doyle
,
D. A.
Doughty
, and
A.
Gallagher
,
J. Appl. Phys.
68
,
4375
(
1990
).
6.
P. A.
Longeway
,
R. D.
Estes
, and
H. A.
Weakliem
,
J. Phys. Chem.
88
,
73
(
1984
).
7.
D. A.
Doughty
and
A.
Gallagher
,
Phys. Rev. A
42
,
6166
(
1990
).
8.
G. G. A.
Perkins
and
F. W.
Lampe
,
J. Am. Chem. Soc.
102
,
3764
(
1980
).
9.
J. R.
Doyle
,
D. A.
Doughty
, and
A.
Gallagher
,
J. Appl. Phys.
71
,
4727
(
1992
).
10.
D. A.
Doughty
and
A.
Gallagher
,
J. Appl. Phys.
67
,
139
(
1990
).
11.
D.
Doughty
,
J. R.
Doyle
,
G. H.
Lin
, and
A.
Gallagher
,
J. Appl. Phys.
67
,
6220
(
1990
).
12.
J. R. Doyle, Ph.D. thesis, University of Colorado, Boulder, 1989.
13.
G. H.
Lin
,
J. R.
Doyle
,
M.
He
, and
A.
Gallagher
,
J. Appl. Phys.
64
,
188
(
1988
).
14.
N.
Hata
,
A.
Matsuda
, and
K.
Tanaka
,
J. Appl. Phys.
61
,
3055
(
1987
).
15.
J. O.
Chu
,
M. H.
Begemann
,
J. S.
McKillop
, and
J. M.
Jasinski
,
Chem. Phys. Lett.
5
,
576
(
1989
).
16.
J.
Perrin
,
P. R.
Cabarrocas
,
B.
Allain
, and
J.-M.
Friedt
,
Jpn. J. Appl. Phys.
27
,
2041
(
1988
).
17.
M.
Kushner
,
IEEE Trans. Plasma Sci.
PS-14
,
188
(
1986
).
18.
J.
Perrin
,
J. P. M.
Schmitt
,
G.
de Rosny
,
B.
Drevillon
,
J.
Huc
, and
A.
Lloret
,
Chem. Phys.
73
,
383
(
1982
).
19.
The ratio of radical-radical reactions/radical-wall reactions is given approximately by R2N2D2, where R2 is the rate of disilane dissociation, N2 the disilane density, k the radical-radical reaction rate coefficient, τD = L2π−2D−1 is the fundamental-mode diffusion time between parallel plates of separation L, and D is the radical diffusion coefficient. In the present experiment R≅0.005 s−1,N2≅4×1015cm−3,L = 4 cm, and k = 5×10−10cm−3s−1, and D 3000 cm2s−1 are assumed, resulting in a ratio of ∼2×10−3. The effective L is larger than the plate gap by 1.3λ(1−β), where λ is the diffusion mean free path of β, the surface reactive sticking coefficient. In the present case λ≅0.04 cm and β≅0.3, and this is a negligible correction.
20.
J. P. F.
Schmitt
,
P.
Gressier
,
M.
Krishnan
,
G. E.
De Rosyn
, and
J.
Perrin
,
Chem. Phys.
84
,
281
(
1984
).
21.
J. M.
Jasinski
and
J. O.
Chu
,
J. Chem. Phys.
88
,
1678
(
1988
).
22.
T. L.
Pollock
,
H. S.
Sandhu
,
A.
Jodhan
, and
O. P.
Strausz
,
J. Am. Chem. Soc.
94
,
1017
(
1973
).
23.
L.
Fabry
,
P.
Potzinger
,
B.
Reimann
,
A.
Ritter
, and
H. P.
Steenbergen
,
Organometallics
5
,
1232
(
1986
).
24.
R.
Robertson
and
A.
Gallagher
,
J. Appl. Phys.
59
,
3402
(
1986
).
25.
R. Wolfgang, in Progress in Reaction Kinetics, Vol. 3, edited by G. Porter (Pergamon, New York, 1975).
26.
J.
Perrin
and
J. F. M.
Aarts
,
Chem. Phys.
80
,
351
(
1983
);
J.
Perrin
and
J. F. M.
Aarts
,
67
,
167
(
1982
).,
Chem. Phys.
27.
J. O.
Chu
,
D. B.
Beach
,
R. D.
Estes
, and
J. M.
Jasinski
,
Chem. Phys. Lett.
143
,
135
(
1988
);
J. M.
Jasinski
,
Mat. Res. Soc. Symp. Proc.
165
,
41
(
1990
).
28.
G. G. A.
Perkins
,
E. R.
Austin
, and
F. W.
Lampe
,
J. Am. Chem. Soc.
101
,
1109
(
1979
).
29.
Ph.
Belenguer
and
J. P.
Boeuf
,
Phys. Rev. A
41
,
4447
(
1990
).
30.
A.
Gallagher
,
J. Appl. Phys.
63
,
2406
(
1988
).
31.
B.
Drevillon
,
J.
Perrin
,
J. M.
Siefert
,
J.
Huc
,
A.
Lloret
,
G.
de Rosny
, and
J. P. M.
Schmitt
,
Appl. Phys. Lett.
42
,
801
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.