An optimized nearest‐neighbor tight‐binding description of valence bands in strained‐layer III‐V semiconductors is developed and applied to the calculation of valence‐band offsets at strained heterojunctions. It is first shown that a single set of universal interatomic matrix elements can be found which, when appropriately scaled for bond length, simultaneously provide near‐optimum tight‐binding predictions of valence‐band uniaxial deformation potentials, trends in photoelectric thresholds, and valence bandwidths for the common III‐V compounds. Application of the optimized tight‐binding model to the calculation of valence‐band offsets at strained heterojunctions is then discussed, and one simple approach is described which combines a fully strain‐dependent version of the optimized tight‐binding model with Tersoff’s quantum‐dipole heterojunction model. Offsets calculated using this combined approach are shown to agree with experimental data better than either strain‐dependent natural tight‐binding offsets or offsets calculated directly from Tersoff’s model. Finally, convenient quadratic expressions for the composition dependence of light‐and heavy‐hole valence‐band offsets, as calculated using the combined approach, are tabulated for several strained and unstrained ternary‐on‐binary III‐V heterojunctions. The balance between accuracy and simplicity offered by our approach should render it useful for exploratory heterojunction device modeling.

1.
R. L.
Anderson
,
Solid State Electron.
5
,
341
(
1962
).
2.
C. G.
Van de Walle
and
R. M.
Martin
,
Phys. Rev. B
35
,
8154
(
1987
).
3.
For example,
A. D.
Katnani
and
G.
Margaritondo
,
Phys. Rev. B
28
,
1944
(
1983
).
4.
J.
Tersoff
,
Phys. Rev. B
30
,
4874
(
1984
).
5.
J.
Tersoff
,
Phys. Rev. Lett.
56
,
2755
(
1986
).
6.
M.
Cardona
and
N. E.
Christensen
,
Phys. Rev. B
35
,
6182
(
1987
).
7.
C. G.
Van de Walle
,
Phys. Rev. B
39
,
1871
(
1989
).
8.
D. J.
Chadi
and
M. L.
Cohen
,
Phys. Status Solidi
68
,
405
(
1975
).
9.
P.
Vogl
,
H. P.
Hjalmarson
, and
J. D.
Dow
,
J. Phys. Chem. Solids
44
,
365
(
1983
).
10.
W. A. Harrison, Electronic Structure and the Properties of Solids (W. H. Freeman, San Francisco, 1980).
11.
W. A.
Harrison
,
J. Vac. Sci. Technol.
14
,
1016
(
1977
).
12.
J. C.
Duran
,
A.
Munoz
, and
F.
Flores
,
Phys. Rev.
35
,
7721
(
1987
).
13.
B.
Haussy
,
C.
Priester
,
G.
Allan
, and
M.
Lanoo
,
Phys. Rev. B
36
,
1105
(
1987
).
14.
C.
Priester
,
G.
Allan
, and
M.
Lannoo
,
J. Vac. Sci. Technol. B
6
,
1290
(
1988
).
15.
C.
Priester
,
G.
Allan
, and
M.
Lannoo
,
Phys. Rev. B
38
,
9870
(
1988
).
16.
Herman-Skillman term values (tabulated in Ref. 10) were found to yield better optimum tight-binding predictions than did Hartree-Fock values, and are thus used throughout this work.
17.
S. T.
Pantelides
and
W. A.
Harrison
,
Phys. Rev. B
11
,
3006
(
1975
);
S.
Froyen
and
W. A.
Harrison
,
Phys. Rev. B
20
,
2420
(
1979
).,
Phys. Rev. B
18.
C.
Priester
,
G.
Allan
, and
M.
Lannoo
,
Phys. Rev. B
37
,
8519
(
1988
).
19.
J. R.
Chelikowski
and
M. L.
Cohen
,
Phys. Rev. B
14
,
556
(
1976
).
20.
J. C.
Slater
and
G. F.
Koster
,
Phys. Rev.
94
,
1498
(
1954
).
21.
Based on strain Hamiltonian of
G. E.
Pikus
and
G. E.
Bir
,
Sov. Phys. Solid State
1
,
136
(
1959
);
G. E.
Pikus
and
G. E.
Bir
,
1502
(
1960
).,
Sov. Phys. Solid State
22.
Sometimes written as dE(Γ15)/d(InΩ), where Ω is the crystal volume.
23.
From Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology (Springer, New York, 1982).
24.
D. J.
Chadi
and
R. M.
Martin
,
Solid State Commun.
19
,
643
(
1976
).
25.
W. A.
Harrison
and
J.
Tersoff
,
J. Vac. Sci. Technol. B
4
,
1068
(
1986
).
26.
W. R. L.
Lambrecht
and
B.
Segall
,
Phys. Rev. B
41
,
2832
(
1990
).
27.
We have carried out such a procedure using our optimized tight-binding model, and found that prediction accuracies were better than for straindependent tight-binding with no dipole correction but not as good as for the unstrained mid gap model.
28.
G.
Margaritondo
,
A. D.
Katnani
,
N. G.
Stoffel
,
R. R.
Daniels
, and
Te-Xiu
Zhao
,
Solid State Commun.
43
,
163
(
1982
).
29.
J. Tersoff, in Heterojunction Band Discontinuities: Physics and Applications, edited by F. Capasso and G. Margaritondo (Elsevier, New York, 1987).
30.
R. W.
Grant
,
J. R.
Waldrop
,
E. A.
Kraut
, and
W. A.
Harrison
,
J. Vac. Sci. Technol. B
8
,
736
(
1990
).
31.
K. F.
Huang
,
K.
Tai
,
S. N. G.
Chu
, and
A. Y.
Cho
,
Appl. Phys. Lett.
54
,
2026
(
1989
).
32.
Y.
Zou
,
P.
Grodzinski
,
E. P.
Menu
,
W. G.
Jeong
,
P. D.
Dapkus
,
J. J.
Alwan
, and
J. J.
Coleman
,
Appl. Phys. Lett.
58
,
601
(
1991
).
33.
J. P.
Reithmaier
,
R.
Hoger
,
H.
Riechert
,
A.
Heberle
,
G.
Abstreiter
, and
G.
Weimann
,
Appl. Phys. Lett.
56
,
536
(
1990
).
34.
M. J.
Joyce
,
M. L.
Johnson
,
M.
Gal
, and
B. F.
Usher
,
Phys. Rev. B
38
,
10978
(
1988
).
35.
J. Y.
Marzin
,
M. N.
Charasse
, and
B.
Sermange
,
Phys. Rev. B
31
,
8298
(
1985
).
36.
G.
Ji
,
D.
Huang
,
U. K.
Reddy
,
T. S.
Henderson
,
R.
Houdre
, and
H.
Morkoc
,
J. Appl. Phys.
62
,
3366
(
1987
).
37.
N. G.
Anderson
,
W. D.
Laidig
,
R. M.
Kolbas
, and
Y. C.
Lo
,
J. Appl. Phys.
60
,
2361
(
1986
).
38.
W. I.
Wang
,
T. S.
Kuan
,
E. E.
Mendez
, and
L.
Esaki
,
Phys. Rev. B
31
,
6890
(
1985
).
39.
J. R.
Waldrop
,
R. W.
Grant
, and
E. A.
Kraut
,
J. Vac. Sci. Technol. B
4
,
1209
(
1987
).
40.
W. I.
Wang
and
F.
Stern
,
J. Vac. Sci. Technol. B
3
,
1280
(
1986
).
41.
A. D.
Katnani
and
R. S.
Bauer
,
Phys. Rev. B
33
,
1106
(
1986
).
42.
P.
Dawson
,
B. A.
Wilson
,
C. W.
Tu
, and
R. C.
Miller
,
Appl. Phys. Lett.
48
,
541
(
1986
).
43.
N.
Debbar
,
N. D.
Biswas
, and
P.
Bhattacharya
,
Phys. Rev. B
40
,
1058
(
1989
).
44.
R.
People
,
K. W.
Wecht
,
K.
Alavi
, and
A. Y.
Cho
,
Appl. Phys. Lett.
43
,
118
(
1983
).
45.
S. Y.
Lin
,
D. C.
Tsui
,
H.
Lee
, and
D.
Ackley
,
Appl. Phys. Lett.
55
,
2211
(
1989
).
46.
D. V.
Lang
,
M. B.
Panish
,
F.
Capasso
,
J.
Allam
,
R. A.
Hamm
,
A. M.
Sergent
, and
W. T.
Tsang
,
Appl. Phys. Lett.
50
,
736
(
1987
).
47.
R. E.
Cavicchi
,
D. V.
Lang
,
D.
Gershoni
,
A. M.
Sergent
,
J. M.
Vanderberg
,
S. N. G.
Chu
, and
M. B.
Panish
,
Appl. Phys. Lett.
54
,
739
(
1989
).
48.
M. A.
Hasse
,
N.
Pan
, and
G. E.
Stillman
,
Appl. Phys. Lett.
54
,
1457
(
1989
).
49.
M. O.
Watanabe
and
Y.
Ohba
,
Appl. Phys. Lett.
50
,
906
(
1987
).
50.
M. A.
Rao
,
E. J.
Caine
,
H.
Kroemer
,
S. I.
Long
, and
D. I.
Babic
,
J. Appl. Phys.
61
,
643
(
1987
).
51.
D.
Biswas
,
N.
Debbar
,
P.
Bhattacharya
,
M.
Razeghi
,
M.
Defour
, and
F.
Omnes
,
Appl. Phys. Lett.
56
,
833
(
1990
).
52.
J.
Chen
,
J. R.
Sites
,
I. L.
Spain
,
M. J.
Hafich
, and
G. Y.
Robinson
,
Appl. Phys. Lett.
58
,
744
(
1991
).
53.
G. J.
Gualtieri
,
R. G.
Nuzzo
,
R. J.
Malik
,
J. F.
Walker
,
L. C.
Feldman
,
W. A.
Sunder
, and
G. P.
Schwartz
,
J. Vac. Sci. Technol. B
5
,
1284
(
1987
).
54.
J.
Mendez
,
A.
Pinczuk
,
D. J.
Werder
,
J. P.
Valladares
,
T. H.
Chio
, and
W. T.
Tsang
,
Solid State Commun.
61
,
703
(
1987
).
55.
A.
Nakagawa
,
H.
Kroemer
, and
J.
English
,
Appl. Phys. Lett.
54
,
1893
(
1989
).
56.
Respective errors increase to 0.108, 0.077, 0.071, 0.052, and 0.060 eV if only two results for In0.52Al0.48As/InP junctions [from
Appl. Phys. Lett.
45
,
1123
(
1984
);
53
,
1621
(
1988
)] are included in the set. Prediction errors were exceptionally large for these junctions for unknown reasons.,
Appl. Phys. Lett.
This content is only available via PDF.
You do not currently have access to this content.