Interdiffusion in the Cu‐based Cu/Pd, Cu/Pt, Cu/Ni, Cu/NiB, Cu/Co, Cu/Cr, Cu/Ti, and Cu/TiN bilayer films has been investigated for anneal temperatures ranging from 150 to 400 °C in forming gas (N2‐10%H2). The diffusion of Pd, Pt, and Ni into Cu has resulted in a significant increase in the sheet resistance of the film, which is correlated with the concentration profiles obtained from Rutherford backscattering spectrometries. In contrast, the diffusion of Co or Cr into Cu is negligible, probably due to the lack of solubility of Co or Cr in Cu at temperature ≤400 °C. Outdiffused Cu species were detected on the Pd, Pt, Ni, NiB, Ti, and Co surfaces, while that of Cu through Cr or TiN was negligible. The increases in film resistivities are mostly due to the increase of electron‐impurity scattering centers as solute atoms diffuse into Cu. As a result, factors such as the use of different overcoated metals, annealing temperature, thickness of the Cu film, and the grain size of Cu all played a critical role in affecting the resistivity of the Cu films. The driving force for interdiffusion in these binary systems appears to be dominated by the mutual solubility between the bilayer films. Interdiffusion between the bilayer films can be suppressed by interposing a diffusion barrier layer of Cr, Ti, Zr, or TiN between Cu and the overcoated films. The trilayer structures are thermally stable up to 400 °C.

1.
Thin Films—Interdiffusions and Reactions, edited by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978).
2.
C.-A. Chang, in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by D. Gupta and P. S. Ho (Noyes, New Jersey, 1988), p. 323.
3.
Thin Film Interfaces and Interactions, edited by J. E. E. Baglin and J. M. Poate (Electrochemical Society, Pennington, NJ, 1980), Vol. 80-2.
4.
Thin Films and Interfaces II, edited by J. E. E. Baglin, D. R. Campbell, and W. K. Chu (Materials Research Society, Pittsburgh, PA, 1984), Vol. 25.
5.
M.-A.
Nicolet
,
Thin Solids Films
52
,
415
(
1978
).
6.
M.-A.
Nicolet
and
M.
Bartur
,
J. Vac. Sci. Technol.
19
,
186
(
1981
).
7.
C.-A.
Chang
,
J. Mater. Res.
2
,
441
(
1987
).
8.
H. P. Kattelus and M.-A. Nicolet, in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by D. Gupta and P. S. Ho (Noyes, New Jersey, 1988), p. 432.
9.
R. S.
Nowicki
and
M.-A.
Nicolet
,
Thin Solid Films
96
,
317
(
1982
).
10.
G.
Bruni
and
D.
Meneghini
,
Atti Reale Accad. Naz. Lincei Mem. CI. Sci. Fis. Mat. Nat.
20
,
671
(
1911
).
11.
D.
Lazarus
,
Solid State Phys.
10
,
71
(
1960
).
12.
S.
Ceresara
,
T.
Federighi
, and
F.
Pieragostini
,
Phys. Status Solidi
16
,
439
(
1966
).
13.
P. M.
Hall
and
J. M.
Morabito
,
Thin Solid Films
33
,
107
(
1976
).
14.
A.
Matthiessen
and
C.
Vogt
,
Pogg. Ann. Phys. Chem.
122
,
19
(
1864
).
15.
J. S.
Fisher
and
P. M.
Hall
,
Proc. IEEE
59
,
1418
(
1971
).
16.
C. W.
Ho
,
D. A.
Chance
,
C. H.
Bajorek
, and
R. E.
Acosta
,
IBM J. Res. Dev.
26
,
286
(
1982
).
17.
R. J.
Jensen
,
J. P.
Cummings
, and
H.
Vora
,
IEEE Trans.
CHMT-7
,
384
(
1984
).
18.
K.
Moriya
,
T.
Ohsaki
, and
K.
Katsura
,
IEEE Trans.
CHMT-7
,
82
(
1984
).
19.
A.
Deutsch
,
G. V.
Kopcsay
,
V. A.
Ranieri
,
J. K.
Cataldo
,
E. A.
Galligan
,
W. S.
Graham
,
R. P.
McGouey
,
S. L.
Nunes
,
J. R.
Paraszczak
,
J. J.
Ritsko
,
R. J.
Serino
,
D.-Y.
Shih
, and
J. S.
Wilczynski
,
IBM J. Res. Dev.
34
,
601
(
1990
).
20.
Tencor Instruments, m-gauge 300 system.
21.
J. E. E. Baglin and F. M. d’Heurle, in Ion Beam Surface Layer Analysis, edited by O. Meyer, G. Linker, and F. Kappeler (Plenum, New York, 1976), p. 385.
22.
J. E. E. Baglin, V. Brusic, E. Alessandrini, and J. Ziegler, in Application of Ion Beams to Metals, edited by S. T. Picraux, E. P. EerNisse, and F. L. Vook (Plenum, New York, 1974), p. 169.
23.
M. Hansen, in Constitution of Binary Alloys (McGraw-Hill, New York, 1958), pp. 612–618.
24.
G. T. Meaden, in Electrical Resistance of Metals (Plenum, New York, 1965), p. 121.
25.
D.-Y.
Shih
,
J.
Parasczak
,
N.
Klymko
,
R.
Flitsch
,
S.
Nunes
,
J.
Lewis
,
C.
Yang
,
J.
Cataldo
,
R.
McGouey
,
W.
Graham
,
R.
Serino
, and
E.
Galligan
,
J. Vac. Sci. Technol. A
7
,
1402
(
1989
).
26.
A. N. Gerritsen, in Handbook of Physics (Springer, Berlin, 1957).
27.
K. S. Schroder, in CRC Handbook of Electrical Resistivities of Binary Metallic Alloys (CRC, Boca Raton, FL, 1983).
28.
W.-K. Chu, J. W. Mayer, and M.-A. Nicolet, in Backscattering Spectrometry (Academic, New York, 1978), p. 127.
29.
T. G. Finstad and W.-K. Chu, in Analytical Techniques for Thin Films, edited by K. N. Tu and R. Rosenberg (Academic, New York, 1988), p. 407.
30.
C.-A. Chang (unpublished).
31.
J. M.
Poate
,
P. A.
Turner
, and
W. J.
Debonte
,
J. Appl. Phys.
10
,
4275
(
1975
).
32.
C.-A.
Chang
,
J. Appl. Phys.
53
,
7092
(
1982
).
33.
D. Gupta, D. R. Campbell, and P. S. Ho, in Thin Films—Interdif fusions and Reactions, edited by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978), p. 161.
34.
C.-A.
Chang
,
J. Appl. Phys.
60
,
1220
(
1986
).
35.
J. E. E. Baglin and J. M. Poate, in Thin Films—Interdif fusions and Reactions, edited by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978), p. 305.
36.
R. Flitsch and D.-Y. Shih (unpublished).
37.
A. E.
Gershinskii
,
A. A.
Khoromenko
, and
E. I.
Cherepov
,
Phys. Status Solidi (A)
31
,
61
(
1975
).
38.
C. W. Nelson, Proceedings of the International Symposium on Hybrid Microelectronics, Dallas, Texas, 1969, p. 413.
39.
P. R. Fournier, U. S. Patent No. 3,879,746 (1975).
This content is only available via PDF.
You do not currently have access to this content.