Steady‐state photoluminescence, time‐resolved photoluminescence, and x‐ray photoelectron spectroscopy have been used to study the electrical and chemical properties of GaAs surfaces exposed to inorganic and organic sulfur donors. Despite a wide variation in S2−(aq) concentration, variation of the pH of aqueous HSsolutions had a small effect on the steady‐state n‐type GaAs photoluminescence intensity, with surfaces exposed to pH=8, 0.1‐M HS(aq) solutions displaying comparable luminescence intensity relative to those treated with pH=14, 1.0‐M Na2S⋅9H2O(aq). Organic thiols (R‐SH, where R=−CH2CH2SH or −C6H4Cl) dissolved in nonaqueous solvents were found to effect increases in steady‐state luminescence yields and in time‐resolved luminescence decay lifetimes of (100)‐oriented GaAs. X‐ray photoelectron spectroscopy showed that exposure of GaAs surfaces to these organic systems yielded thiols bound to the GaAs surface, but such exposure did not remove excess elemental As and did not form a detectable As2S3 overlayer on the GaAs. These results imply that complete removal of As0 or formation of monolayers of As2S3 is not necessary to effect a reduction in the recombination rate at etched GaAs surfaces. Other compounds that do not contain sulfur but that are strong Lewis bases, such as methoxide ion, also improved the GaAs steady‐state photoluminescence intensity. These results demonstrate that a general class of electron‐donating reagents can be used to reduce nonradiative recombination at GaAs surfaces, and also imply that prior models focusing on the formation of monolayer coverages of As2S3 and Ga2S3 are not adequate to describe the passivating behavior of this class of reagents. The time‐resolved, high level injection experiments clearly demonstrate that a shift in the equilibrium surface Fermi‐level energy is not sufficient to explain the luminescence intensity changes, and confirm that HS and thiol‐based reagents induce substantial reductions in the surface recombination velocity through a change in the GaAs surface state recombination rate.

1.
(a)
B. J.
Skromme
,
C. J.
Sandroff
,
E.
Yablonovitch
, and
T.
Gmitter
,
Appl. Phys. Lett.
51
,
2022
(
1987
);
(c)
C. J.
Sandroff
,
R. N.
Nottenburg
, and
J. C.
Bischoff
,
R.
Bhat
,
Appl. Phys. Lett.
51
,
33
(
1987
);
(c)
E.
Yablonovitch
,
C. J.
Sandroff
,
R.
Bhat
, and
T.
Gmitter
,
Appl. Phys. Lett.
51
,
439
(
1987
).
2.
A. Heller, in Photoeffects at Semiconductor-Electrolyte Interfaces, edited by A. Nozik, ACS Symposium Series 146 (ACS, Washington, DC, 1981), pp. 57–77.
3.
(a)
M. S.
Carpenter
,
M. F.
Melloch
, and
T. E.
Dungan
,
Appl. Phys. Lett.
53
,
66
(
1988
),
(b)
M. S.
Carpenter
,
M. R.
Melloch
,
M. S.
Lundstrom
, and
S. P.
Tobin
,
Appl. Phys. Lett.
52
,
2157
(
1988
).,
Appl. Phys. Lett.
4.
(a)
H.
Hasegawa
,
T.
Saitoh
,
S.
Konishi
,
J.
Ishii
, and
H.
Ohno
,
Jpn. J. Appl. Phys.
27
,
L2177
(
1988
);
(b)
H.
Hasegawa
,
H.
Ishii
,
T.
Sawada
,
T.
Saitah
,
S.
Kanishi
,
Y.
Liu
, and
H.
Ohno
,
J. Vac. Sci. Technol. B
6
,
1184
(
1988
).
5.
(a)
G. D.
Pettit
and
J. M.
Woodall
,
J. Vac. Sci. Technol. B
6
,
1180
(
1988
);
(b)
C. W.
Wilmsen
,
P. D.
Kirchner
, and
J. W.
Woodall
,
J. Appl. Phys.
64
,
3287
(
1988
).
6.
C. J.
Spindt
,
D.
Liu
,
K.
Miyano
,
P. L.
Meissner
,
T. I.
Chaing
,
T.
Kendelewicz
,
I.
Lindau
, and
W. E.
Spicer
,
Appl. Phys. Lett.
55
,
861
(
1989
).
7.
C. J.
Spindt
,
R. S.
Besser
,
R.
Cao
,
K.
Miyano
,
C. R.
Helms
, and
W. E.
Spicer
,
J. Vac. Sci. Technol. A
7
,
2466
(
1989
).
8.
(a)
R. S.
Besser
,
C. R.
Helms
,
Appl. Phys. Lett.
52
,
1707
(
1988
);
(b)
D.
Liu
,
T.
Zhang
,
R. A.
LaRue
,
J. S.
Harris
, and
T. W.
Sigmon
,
Appl. Phys. Lett.
53
,
1059
(
1988
).,
Appl. Phys. Lett.
9.
T.
Tiedje
,
P. C.
Wong
,
K. A. R.
Mitchell
,
W.
Eberhardt
,
Z.
Fu
, and
D.
Sondericker
,
Solid State Commun.
70
,
355
(
1989
).
10.
(a)
B. A.
Cowans
,
Z.
Dardas
, and
W. N.
Delgass
,
Appl. Phys. Lett.
54
,
365
(
1989
),
(b)
M. S.
Carpenter
,
M. R.
Melloch
,
B. A.
Cowans
,
Z.
Dardas
, and
W. N.
Delgass
,
J. Vac. Sci. Technol. B
7
,
845
(
1989
).
11.
H.
Hirayama
,
Y.
Matsumato
,
H.
Oigawa
, and
Y.
Nannichi
,
Appl. Phys. Lett.
54
,
2565
(
1989
).
12.
C. J.
Sandroff
,
M. S.
Hegde
,
L. A.
Farrow
,
C. C.
Chang
, and
J. P.
Harbison
,
Appl. Phys. Lett.
54
,
362
(
1989
).
13.
(a)
K. M.
Geib
,
J.
Shin
, and
C. W.
Wilmsen
,
J. Vac. Sci. Technol. B
8
,
838
(
1990
);
(b)
J.
Shin
,
K. M.
Geib
,
C. W.
Wilmsen
, and
Z.
Lilliental-Weber
,
J. Vac. Sci. Technol. A
8
,
1894
(
1990
);
(c)
T.
Tiedje
,
K. M.
Colbow
,
D.
Rogers
,
Z.
Fu
, and
W.
Everhardt
,
J. Vac. Sci. Technol. B
7
,
837
(
1989
).
14.
E.
Yablonovitch
,
B. J.
Skromme
,
R.
Bhat
,
J. P.
Harbison
, and
T. J.
Gmitter
,
Appl. Phys. Lett.
54
,
555
(
1989
).
15.
C. J.
Spindt
and
W. E.
Spicer
,
Appl. Phys. Lett.
55
,
1653
(
1989
).
16.
A. Many, Y. Goldstein, and H. B. Grover, Semiconductor Surfaces (North-Holland, New York, 1965).
17.
M.
Evenor
,
S.
Gottesfeld
,
Z.
Harzion
,
D.
Hupert
, and
S. W.
Feldberg
,
J. Phys. Chem.
88
,
6213
(
1984
).
18.
S. W.
Feldberg
,
M.
Evenor
,
D.
Huppert
, and
S.
Gottesfeld
,
J. Electroanal. Chem.
185
,
209
(
1985
).
19.
P. J.
Grunthaner
,
R. P.
Vasquez
, and
F. J.
Grunthaner
,
J. Vac. Sci. Technol.
17
,
1045
(
1980
).
20.
Material grown by organometallic vapor-phase epitaxy by Hugh MacMillan of Varian Associates, Palo Alto, CA.
21.
Material grown by molecular-beam epitaxy, and kindly supplied by C. Sandroff of Bellcore, Red Bank, NJ.
22.
H. J.
Stocker
and
D. E.
Aspnes
,
Appl. Phys. Lett.
42
,
85
(
1983
).
23.
B. J.
Tufts
,
L. G.
Casagrande
,
N. S.
Lewis
, and
F. J.
Grunthaner
,
Appl. Phys. Lett.
57
,
2262
(
1990
).
24.
R. P.
Vasquez
,
B. F.
Lewis
, and
F. J.
Grunthaner
,
J. Vac. Sci. Technol. B
1
,
791
(
1983
).
25.
(a)
M.
Fukuda
and
K.
Takahei
,
J. Appl. Phys.
57
,
129
(
1985
);
(b)
D.
Guidotti
,
E.
Hasan
,
H. J.
Hovel
, and
M.
Albert
,
Appl. Phys. Lett.
50
,
754
(
1987
);
(c)
T.
Suzuki
and
M.
Ogawa
,
Appl. Phys. Lett.
31
,
473
,
1977
.,
Appl. Phys. Lett.
26.
D. E.
Aspnes
,
S. M.
Kelso
,
R. A.
Logan
, and
R.
Bhat
,
J. Appl. Phys.
60
,
754
(
1986
).
27.
D. V. O’Conner and D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).
28.
(a)
S.
Canonica
,
J.
Forrer
, and
U. P.
Wild
,
Rev. Sci. Instrum.
56
,
1754
(
1985
);
(b)
W. R.
Ware
,
M.
Pratinidhi
, and
R. K.
Bauer
,
Rev. Sci. Instrum.
54
,
1148
(
1983
).,
Rev. Sci. Instrum.
29.
(a)
R. J.
Nelson
and
R. G.
Sobers
,
J. Appl. Phys.
49
,
6103
(
1978
);
(b)
G. W.
t’Hooft
,
Appl. Phys. Lett.
39
,
389
(
1981
).
30.
J. A.
Wurzbach
and
F. J.
Grunthaner
,
J. Electrochem. Soc.
130
,
691
(
1983
).
31.
J. H.
Scofield
,
J. Electron. Spectrosc. Relat. Phenom.
8
,
129
(
1976
).
32.
M. P.
Seah
and
W. A.
Dench
,
Surf. Interface Anal.
1
,
2
(
1979
).
33.
E. W.
Williams
and
R. A.
Chapman
,
J. Appl. Phys.
38
,
2547
(
1967
).
34.
S.
Licht
,
F.
Forouzan
, and
K.
Longo
,
Anal. Chem.
62
,
1356
(
1990
).
35.
(a) J. C. Bailor, H. J. Emeleus, R. Nyholu, and A. F. Trotman-Dickenson, Comprehensiue Inorganic Chemistty Vol. I (Pergamon, Oxford, 1973), pp. 430–431;
(b) Vol. II, p. 837.
36.
A. Streitwieser and C. H. Heathcock, Introduction to Organic Chemistry (McMillan, New York, 1976), p. 1188.
37.
J. E. Huheey, Inorganic Chemistry, 3rd ed. (Harper and Row, New York, 1983), p. 313.
38.
(a)
B.
Smandek
,
G.
Chmiel
, and
H.
Gerischer
,
Ber. Bunsenges. Phys. Chem.
93
,
1094
(
1989
);
(b)
G. J.
Meyer
,
G. C.
Lisensky
, and
A. B.
Ellis
,
J. Am. Chem. Soc.
110
,
4914
(
1988
).
39.
Full details of the modeling program used in our laboratory will be provided elsewhere: G. N. Ryba and N. S. Lewis (to be published).
40.
R. J.
Nelson
and
R. G.
Sobers
,
Appl. Phys. Lett.
32
,
761
(
1978
).
41.
The spectra for etch C were taken with a VG nonmonochromatic Al Kα x-ray source on a modifled VG HB50, ESCA III system.
42.
M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon, New York, 1966).
43.
The sample was oxidized and the lowest binding energy peak was taken to be As2S3. This value matches well with that found in
M. K.
Bahl
,
R. O.
Woodall
,
R. L.
Watson
, and
K. J.
Irgolic
,
J. Chem. Phys.
64
,
1210
(
1976
).
44.
C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979).
45.
C. P.
Srivastanva
,
D. F.
Van de Vondel
, and
G. P.
Van Der Kelen
,
Inorg. Chim. Acta
23
,
L29
(
1977
).
46.
A. Wieckowski, in Modem Aspects of Electrochemistry, edited by R. E. White, J. O’M. Bockris, and B. E. Conway (Plenum, New York, 1990), pp. 65–119.
47.
T. J.
Dunnhauser
,
M.
O’Neil
,
K.
Johnasson
,
D.
Whitten
, and
G.
McLendon
,
J. Phys. Chem.
90
,
6074
(
1986
).
48.
(a)
C. J.
Murphy
and
A. B.
Ellis
,
J. Phys. Chem.
94
,
3082
(
1990
);
(b)
G. J.
Meyer
,
L. K.
Leung
,
J. C.
Yu
.
G. C.
Lisensky
, and
A. B.
Ellis
,
J. Am. Chem. Soc.
111
,
5146
(
1989
).
49.
J. C. Bailor, H. J. Emeleus, R. Nyholu, and A. F. Trotman-Dickenson, Comprehensive Inorganic Chemistry Vol. I (Pergamon, Oxford, 1973), p. 1238.
50.
B. J.
Tufts
,
I. L.
Abrahams
,
C. E.
Caley
,
S. R.
Lunt
,
G. M.
Miskelly
,
M. J.
Sailor
,
P. G.
Santangelo
,
N. S.
Lewis
,
A. L.
Roe
, and
K. O.
Hodgson
,
J. Am. Chem. Soc.
112
,
5123
(
1990
).
51.
(b) J. C. Bailor, H. J. Emeleus, R. Nyholu, and A. F. Trotman-Dickenson, Comprehensive Inorganic Chemistry Vol. II (Pergamon, Oxford, 1973), p. 919;
(b) F. A. Cotton, and G. Wilkinson, Advanced Inorganic Chemistry, 4th ed. (Wiley, New York, 1980), p. 458.
52.
R. C. Weast and M. J. Astle, Eds., Handbook of Chemistry and Physics, 63rd ed. (CRC, Boca Raton, 1983).
53.
Y. J.
Chabal
,
Surf. Sci.
168
,
594
(
1986
).
54.
W. E.
Spicer
,
Z.
Liliental-Weber
,
E.
Weber
,
N.
Newman
,
T.
Kendelewicz
,
R.
Cao
,
C.
McCants
,
P.
Mahowald
,
K.
Miyano
, and
I.
Lindau
,
J. Vac. Sci. Technol. B
6
,
1245
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.