A new type of mean‐field theory, that incorporates the hard‐spin conditions of local degrees of freedom, is generally formulated for arbitrary types of local degrees of freedom. The method is implemented by solving its set of coupled equations for the local distribution functions and densities, either analytically and numerically, or by Monte Carlo sampling (‘‘Monte Carlo mean‐field theory’’). Excellent results are obtained for frustrated Ising models in two and three dimensions. An explicit formulation is given for XY models.

1.
G. H.
Wannier
,
Phys. Rev.
79
,
357
(
1950
);
J.
Stephenson
,
J. Math. Phys.
11
,
420
(
1970
).
2.
R. R.
Netz
and
A. N.
Berker
,
Phys. Rev. Lett.
66
,
377
(
1991
).
3.
R. R. Netz and A. N. Berker, M.I.T. preprint (1991).
4.
J. R. Banavar, M. Cieplak, and A. Maritan, Perm. State Univ. preprint (1991).
5.
(a)
M.
Schick
,
J. S.
Walker
, and
M.
Wortis
,
Phys. Rev. B
16
,
2205
(
1977
);
(b)
W.
Kinzel
and
M.
Schick
,
Phys. Rev. B
23
,
3435
(
1981
).,
Phys. Rev. B
6.
B. D.
Metcalf
,
Phys. Lett. A
45
,
1
(
1973
).
7.
D.
Blankschtein
,
M.
Ma
,
A. N.
Berker
,
G. S.
Grest
, and
C. M.
Soukoulis
,
Phys. Rev. B
29
,
5250
(
1984
);
A. N.
Berker
,
G. S.
Grest
,
C. M.
Soukoulis
,
D.
Blankschtein
, and
M.
Ma
,
J. Appl. Phys.
55
,
2416
(
1984
).
8.
(a)
W. B.
Yelon
,
D. E.
Cox
, and
M.
Eibschiitz
,
Phys. Rev. B
12
,
5007
(
1975
);
(b)
M.
Mekata
and
K.
Adachi
,
J. Phys. Soc. Jpn.
44
,
806
(
1978
);
(c)
K.
Hirakawa
,
H.
Kadowaki
, and
K.
Ubukoshi
,
J. Phys. Soc. Jpn.
52
,
1814
(
1983
).
9.
M. L. Plumer and A. Caillé, J. Appl. Phys. (to be published).
10.
O.
Heinonen
and
R. G.
Petschek
,
Phys. Rev. B
40
,
9052
(
1989
).
11.
M.
Melamud
,
H.
Pinto
,
J.
Makovsky
, and
H.
Shaked
,
Phys. Status Solidi B
63
,
699
(
1974
);
M.
Niel
,
C.
Cros
,
G.
Le Flem
,
M.
Pouchard
, and
P.
Hagenmuller
,
Physica B
86–88
,
702
(
1977
).
12.
R. R. Netz, M.I.T. preprint (1991).
This content is only available via PDF.
You do not currently have access to this content.