Temperature‐driven first‐order phase transitions that involve symmetry breaking are converted to second order by the introduction of infinitesimal quenched bond randomness in spatial dimensions d≤2 or d≤4, respectively, for systems of n=1 or n≥ (R18)2 component microscopic degrees of freedom. Even strongly first‐order transitions undergo this conversion to second order! Above these dimensions, this phenomenon still occurs, but requires a threshold amount of bond randomness. For example, under bond randomness, the phase transitions of q‐state Potts models are second order for all q in d≤2. If no symmetry breaking is involved, temperature‐driven first‐order phase transitions are eliminated under the above conditions. Another consequence is that bond randomness drastically alters multicritical phase diagrams. Tricritical points and critical endpoints are entirely eliminated (d≤2) or depressed in temperature (d≳2). Similarly, bicritical phase diagrams are converted (d≤2) to reentrant‐disorder‐line or decoupled‐tetracritical phase diagrams. These quenched‐fluctuation‐induced second‐order transitions (a diametric opposite to the previously known annealed‐fluctuation‐induced first‐order transitions) should lead to a multitude of new universality classes of criticality, including many experimentally accessible cases.

1.
Y.
Irary
and
S.-k.
Ma
,
Phys. Rev. Lett.
35
,
1399
(
1975
).
2.
A. N.
Berker
,
Phys. Rev. B
42
,
8640
(
1990
).
3.
A. B.
Harris
,
J. Phys. C
7
,
1671
(
1974
).
4.
K.
Hui
and
A. N.
Berker
,
Phys. Rev. Lett.
62
,
2507
(
1989
);
K.
Hui
and
A. N.
Berker
,
63
,
2433
(E) (
1989
).,
Phys. Rev. Lett.
5.
M.
Aizenman
and
J.
Wehr
,
Phys. Rev. Lett.
62
,
2503
(
1989
).
6.
A. N. Berker and K. Hui, in Science and Technology of NanostructuredMagnetic Materials, edited by G. C. Hadjipanayis, G. Prinz, and L. Paretti (Plenum, New York, 1991).
7.
To be precise, a first-order phase transition is defined as any phase boundary point where the thermodynamic phases that are bounded coexist. A second-order phase transition is any phase boundary point where the thermodynamic phases that are bounded do not coexist; it is presumed (and empirically verified) that, at such a point, the macroscopic change from one thermodynamic phase to another is mediated (in this absence of coexistence) by long-range correlations (and the attendant critical singularities).
8.
The equality accompanying the inequality signs is due to belief based on calculations (Ref. 9) on the analogous problem of random-field systems.
9.
S. R.
McKay
and
A. N.
Berker
,
J. Appl. Phys.
64
,
5785
(
1988
).
10.
B.
Nienhuis
and
M.
Nauenberg
,
Phys. Rev. B
13
,
2021
(
1976
).
11.
For the order-disorder transition to occur, fields can only occur in combinations that are “irrelevant,” i.e., that decrease their strength to zero under the renormalization-group transformations.
12.
M.
Blume
,
V. J.
Emery
, and
R. B.
Griffiths
,
Phys. Rev. A
4
,
1071
(
1971
).
13.
W. Hoston and A. N. Berker, J. Appl. Phys. (to be published).
14.
B.
Nienhuis
,
A. N.
Berker
,
E. K.
Riedel
, and
M.
Schick
,
Phys. Rev. Lett.
43
,
737
(
1979
).
15.
A. N.
Berker
,
S.
Ostlund
, and
F. A.
Putnam
,
Phys. Rev. B
17
,
3650
(
1978
).
16.
W. G.
Wilson
and
C. A.
Vause
,
Phys. Lett. A
134
,
360
(
1989
).
17.
From the renormalization-group results in Fig. 3(b) in Ref. 4, note the high numerical accuracy that is necessary to observe quenched-fluctuation-induced second-order behavior.
18.
W. G.
Wilson
,
Phys. Lett. A
137
,
398
(
1989
).
19.
G. N.
Murthy
,
Phys. Rev. B
36
,
7166
(
1987
).
20.
P.
Bak
,
S.
Krinsky
, and
D.
Mukamel
,
Phys. Rev. Lett.
36
,
52
(
1976
).
21.
K. Nelson (private communication).
22.
U. J.
Cox
,
A.
Gibaud
, and
R. A.
Cowley
,
Phys. Rev. Lett.
61
,
982
(
1988
).
23.
A.
Suzuki
and
T.
Tanaka
,
Nature
346
,
345
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.