A complete description of the numerical analysis of quantum waveguide structures and devices is given. Modal expansions of the wave function together with a mode‐matching technique are utilized to calculate the generalized scattering matrices (GSMs) of junctions or discontinuities and uniform waveguide sections. The different GSMs are combined via an extended generalized scattering‐matrix technique to obtain the scattering parameters of composite quantum waveguide structures. Results for cascaded right‐angle bends and periodic multiwaveguide structures in a split‐gate configuration are presented. A sharp transition to a plateau of zero conductance is observed for the double‐bend configuration. For the periodic multiwaveguide structures, strong resonant behavior similar to that in resonant tunneling diodes is found. Calculated current‐voltage characteristics for the special case of a double constriction are shown, exhibiting a region of negative‐differential resistance (NDR) for temperatures up to approximately 10 K with a peak‐to‐valley ratio of about 2.5:1 at zero temperature. Using a simple design procedure, the temperature range with achievable NDR is extended to up to approximately 60 K with a peak‐to‐valley ratio of over 80:1 at zero temperature.

1.
Applications of Multiquantum Wells, Selective Doping, and Superlattices, edited by R. Dingle, Vol. 24 of Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, Orlando, 1987).
2.
T. C. L. G.
Sollner
,
W. D.
Goodhue
,
P. E.
Tannenwald
,
C. D.
Parker
, and
D. D.
Peck
,
Appl. Phys. Lett.
43
,
588
(
1983
).
3.
F.
Capasso
,
K.
Mohammed
, and
A. Y.
Cho
,
IEEE J. Quantum Electron.
QE-22
,
1853
(
1986
).
4.
Nanostructure Physics and Fabrication, Proceedings of the International Symposium, College Station, TX, March 13–15, edited by M. A. Reed and W. P. Kirk (Academic, Boston, 1989).
5.
B. J.
van Wees
,
H.
van Houten
,
C. W. J.
Beenakker
,
J. G.
Williamson
,
L. P.
Kouwenhoven
,
D.
van der Marel
, and
C. T.
Foxon
,
Phys. Rev. Lett.
60
,
848
(
1988
).
6.
D. A.
Wharam
,
T. J.
Thornton
,
R.
Newbury
,
M.
Pepper
,
H.
Ahmed
,
J. E. F.
Frost
,
D. G.
Hasko
,
D. C.
Peacock
,
D. A.
Ritchie
, and
G. A. C.
Jones
,
J. Phys. C
21
,
L209
(
1988
).
7.
R. J.
Brown
,
M. J.
Kelly
,
R.
Newbury
,
M.
Pepper
,
B.
Miller
,
H.
Ahmed
,
D. G.
Hasko
,
D. C.
Peacock
,
D. A.
Ritchie
,
J. E. F.
Frost
, and
G. A. C.
Jones
,
Solid-State Electron.
32
,
1179
(
1989
).
8.
A.
Szafer
and
A. D.
Stone
,
Phys. Rev. Lett.
62
,
300
(
1989
).
9.
A.
Weisshaar
,
J.
Lary
,
S. M.
Goodnick
, and
V. K.
Tripathi
,
Appl. Phys. Lett.
55
,
2114
(
1989
).
10.
A.
Weisshaar
,
J.
Lary
,
S. M.
Goodnick
, and
V. K.
Tripathi
,
SPIE Proc.
1284
,
45
(
1990
).
11.
E.
Kühn
,
Arch. Elek. Übertragung.
27
,
511
(
1973
).
12.
W.
Menzel
and
I.
Wolff
,
IEEE Trans. Microwave Theory Tech.
MTT-25
,
107
(
1977
).
13.
A.
Weisshaar
and
V. K.
Tripathi
,
IEEE Trans. Microwave Theory Tech.
MTT-38
,
1499
(
1990
).
14.
Y. C. Shih, in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, edited by T. Itoh (Wiley, New York, 1989), Chap. 9.
15.
T. Itoh, in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, edited by T. Itoh (Wiley, New York, 1989), Chap. 10.
16.
V. K.
Tripathi
and
P. K.
Bhattacharya
,
Superlatt. Microstruct.
1
,
73
(
1985
).
17.
S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 2nd ed. (Wiley, New York, 1984).
18.
R.
Landauer
,
Philos. Mag.
21
,
863
(
1970
).
19.
P. W.
Anderson
,
D. J.
Thouless
,
E.
Abrahams
, and
D. S.
Fisher
,
Phys. Rev. B
22
,
3519
(
1980
).
20.
D. S.
Fisher
and
P. A.
Lee
,
Phys. Rev. B
23
,
6851
(
1981
).
21.
M.
Büttiker
,
Phys. Rev. B
33
,
3020
(
1986
).
22.
Y. Imry, in Directions of Condensed Matter Physics, edited by G. Grin-stein and G. Mazenko (World Scientific, Singapore, 1986), Vol. 1, p. 101.
23.
M. Büttiker, in Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures, edited by J. M. Chamberlain (Plenum, New York, 1990), p. 51.
24.
S.
Datta
,
Superlatt. Microstruct.
6
,
83
(
1989
).
25.
F.
Sols
,
M.
Macucci
,
U.
Ravaioli
, and
K.
Hess
,
Appl. Phys. Lett.
54
,
350
(
1989
).
26.
F.
Sols
,
M.
Macucci
,
U.
Ravaioli
, and
K.
Hess
,
J. Appl. Phys.
66
,
3892
(
1989
).
27.
R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves (Macmillan, New York, 1971).
28.
H.
Hofman
,
Arch. Elek. Übertragung.
31
,
40
(
1977
).
29.
G.
Schiavon
,
R.
Sorrentino
, and
P.
Tognolatti
,
Int. J. Numer. Model.
1
,
45
(
1988
).
30.
J. P. McKelvey, Solid State and Semiconductor Physics (Harper & Row, New York, 1966).
31.
L. P.
Kouwenhoven
,
F. W. J.
Hekking
,
B. J.
van Wees
,
C. J. P. M.
Harmans
,
C. E.
Timmering
, and
C. T.
Foxon
,
Phys. Rev. Lett.
65
,
361
(
1990
).
32.
S. E.
Ulloa
,
E.
Castaño
, and
G.
Kirczenow
,
Phys. Rev. B
41
,
12350
(
1990
).
33.
M. A. Reed, J. N. Randall, and J. H. Luscombe, in the Proceedings of the NATO Advanced Study Institute on Granular Nanoelectronics, II Ciocco, Italy, July 1990 (to be published).
34.
U.
Sivan
,
Y.
Imry
, and
C.
Hartzstein
,
Phys. Rev. B
39
,
1242
(
1989
).
35.
S. Datta, Quantum Phenomena, Vol. VIII of Modular Series on Solid State Devices, edited by R. F. Pierret and G. W. Neudeck (Addison-Wesley, Reading, MA, 1989).
36.
E. O. Kane, in Tunneling Phenomena in Solids, edited by E. Burstein and S. Lundqvist (Plenum, New York, 1969), Chap. 1.
37.
A.
Weisshaar
,
J.
Lary
,
S. M.
Goodnick
, and
V. K.
Tripathi
,
IEEE Electron Device Lett.
EDL-12
,
2
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.