The magnetic properties of Fe[S2CNC4H8]2I have been studied, the first pentacoordinate Fe(III) system of this type with a cyclic terminal group, rather than an alkyl group, to be examined in detail. The susceptibility of a polycrystalline sample is of Curie–Weiss form above 30 K, with ḡ=2.16 ±0.02 and S=3/2 and with θ=−0.75±1.0 K. Thus the unusual intermediate spin state occurs here as in earlier examples. The susceptibility can be fit quite well down to about 6 K assuming that axial and rhombic crystal field distortions occur, represented by D[Ŝ2zS(S + 1)/3] and E[Ŝ2xŜ2y] terms in the spin Hamiltonian, and incorporating exchange interactions in a mean‐field approximation. Fitted parameters are D/k=9.3± 0.5 K, E/k=−0.6±0.2 K, gx=2.23± 0.05, gy= 2.19 ± 0.05, gz=2.04 ± 0.05, and zJ/k=−0.235 ±0.02 K. At low temperatures the susceptibility exhibits a broad maximum with Tmax)=3.23± 0.04 K and χmax =0.376±0.004 emu/mol. An antiferromagnetic transition at Tc=2.21±0.01 K is inferred from the position of a maximum in (∂χ/∂T), an ordering temperature in reasonable agreement with earlier Mössbauer results. The ratio Tc/Tmax) =0.68±0.01 is suggestive of quasi‐two‐dimensionality. In the region of the maximum an acceptable fit according to a 2D‐ XY model with plausible parameter values can be achieved, but only with a ferromagnetic interlayer exchange interaction about 28% as strong as the leading antiferromagnetic intralayer interaction. Isotherms of M vs H show somewhat unusual curvature, the explanation of which is unclear.

1.
G. C.
DeFotis
,
F.
Palacio
, and
R. L.
Carlin
,
Phys. Rev. B
20
,
2945
(
1979
).
2.
G. C.
DeFotis
and
J. A.
Cowen
,
J. Chem. Phys.
73
,
2120
(
1980
).
3.
G. C.
DeFotis
and
S. A.
Pugh
,
Phys. Rev. B
24
,
6497
(
1981
).
4.
S.
Decurtins
,
F. V.
Wells
,
K.-C.-P.
Sun
, and
H. H.
Wickman
,
Chem. Phys. Lett.
89
,
79
(
1982
).
5.
M.
Yoshikawa
,
M.
Sorai
,
H.
Suga
, and
S.
Seki
,
J. Phys. Chem. Solids
44
,
975
(
1983
).
6.
M.
Yoshikawa
,
M.
Sorai
, and
H.
Suga
,
J. Phys. Chem. Solids
45
,
753
(
1984
).
7.
G. C.
DeFotis
,
B. K.
Failon
,
F. V.
Wells
, and
H. H.
Wickman
,
Phys. Rev. B
29
,
3795
(
1984
).
8.
G. C.
DeFotis
and
J. R.
Laughlin
,
J. Chem. Phys.
84
,
3346
(
1986
).
9.
G. E.
Chapps
,
S. W.
McCann
,
H. H.
Wickman
, and
R. C.
Sherwood
,
J. Chem. Phys.
60
,
990
(
1974
).
10.
A.
Kostikas
,
D.
Petridis
,
A.
Simopoulos
, and
M.
Pasternak
,
Solid State Comm.
13
,
1661
(
1973
).
11.
D.
Petridis
,
A.
Simopoulos
,
A.
Kostikas
, and
M.
Pasternak
,
J. Chem. Phys.
65
,
3139
(
1976
).
12.
A. H.
White
,
R.
Roper
,
E.
Kokot
,
H.
Waterman
, and
R. L.
Martin
,
Aust. J. Chem.
17
,
294
(
1964
).
13.
M. E.
Fisher
and
M. F.
Sykes
,
Physica
28
,
939
(
1962
).
14.
J. A.
Puertolas
,
R.
Navarro
,
F.
Palacio
,
J.
Bartolome
,
D.
Gonzalez
, and
R. L.
Carlin
,
Phys. Rev. B
26
,
395
(
1982
).
15.
R. L.
Carlin
,
D. W.
Carnegie
,
J.
Bartolome
,
D.
Gonzalez
, and
L. M.
Floria
,
Phys. Rev. B
32
,
7476
(
1985
).
16.
M. P.
Sykes
and
M. E.
Fisher
,
Physica
28
,
919
(
1962
).
17.
J. P. A. M.
Hijmans
,
Q. A. G.
van Vlimmeren
, and
W. J. M.
de Jonge
,
Phys. Rev. B
12
,
3859
(
1975
).
18.
J. M.
Grow
,
G. L.
Robbins
, and
H. H.
Wickman
,
J. Chem. Phys.
67
,
5282
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.