A detailed theoretical and experimental study of laser‐induced density and temperature changes, and flow‐reorientation effects in the nematic and smectic phases of liquid crystals is presented. Using picosecond lasers, the initial nanosecond dynamics of the photoinduced density waves, temperature buildup, and relaxations are temporally resolved. The experimentally observed relaxation phenomena and time scales are in good agreement with the theoretical expressions obtained by analytical solutions of the coupled hydrodynamical equations describing these fundamental mechanisms. Our new measurement and theory provide a quantitative account of the relative contribution from the electrostrictive and thermoelastic contributions that had not been presented in previous studies. Our study of the smectic phase has conclusively established the mechanism for the formation of erasable and permanent grating effects under short‐laser‐pulse excitation as laser‐induced electrostrictive and thermoelastic effects.

1.
See, for example,
I. C.
Khoo
and
R.
Normandin
,
Opt. Lett.
9
,
285
(
1984
).
See also I. C. Khoo, in Nonlinear Optics of Liquid Crystals, Vol. 26 of Progress in Optics, edited by E. Wolf (North-Holland, Amsterdam, 1988).
2.
I. C.
Khoo
and
Y. R.
Shen
,
Opt. Eng.
24
,
579
(
1985
).
3.
A. S.
Zolotko
,
V. F.
Kitaeva
,
N.
Kroo
,
N. N.
Sobolev
, and
L.
Chillag
,
JETP Lett.
32
,
158
(
1980
).
4.
N. V.
Tabiryan
and
B. Ya.
Zeldovich
,
Mol. Cryst. Liq. Cryst.
62
,
237
(
1981
);
N. V.
Tabiryan
and
B. Ya.
Zeldovich
,
69
,
19
(
1981
); ,
Mol. Cryst. Liq. Cryst.
N. V.
Tabiryan
and
B. Ya.
Zeldovich
,
69
,
31
(
1981
); ,
Mol. Cryst. Liq. Cryst.
N. V.
Tabiryan
,
A. V.
Sukhov
, and
B. Ya.
Zeldovich
,
Mol. Cryst. Liq. Cryst.
136
,
1
(
1986
).
5.
S. D.
Durbin
,
S. M.
Arakelian
, and
Y. R.
Shen
,
Phys. Rev. Lett.
47
,
1411
(
1981
).
See also
H.
Hsiung
,
L. P.
Shi
, and
Y. R.
Shen
,
Phys. Rev. A
30
,
1453
(
1981
).
6.
I. C.
Khoo
and
R.
Normandin
,
Opt. Lett.
9
,
285
(
1984
);
I. C.
Khoo
and
R.
Normandin
,
IEEE J. Quantum Electron.
QE-21
,
329
(
1985
).
7.
I. C.
Khoo
,
R.
Michael
, and
P. Y.
Yan
,
IEEE J. Quantum Electron.
QE-23
,
267
(
1987
).
8.
I. C.
Khoo
,
P. Y.
Yan
,
G. M.
Finn
,
T. H.
Liu
, and
R. R.
Michael
,
J. Opt. Soc. Am. B
5
,
202
(
1988
);
I. C.
Khoo
and
T. H.
Liu
,
Phys. Rev. A
39
,
4036
(
1989
).
9.
See, for example, P. G. DeGennes, The Physics of Liquid Crystals (Oxford University, London, 1974);
L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Wiley, New York, 1983).
10.
G.
Eyring
and
M. D.
Fayer
,
J. Chem. Phys.
81
,
4314
(
1984
).
11.
H. J. Eichler, D. Gunter, and D. N. Pohl, Laser Induced Dynamic Grating (Springer, Berlin, 1986).
12.
I. P.
Batra
,
R. H.
Enns
, and
D.
Pohl
,
Phys. Status Solidi
48
,
11
(
1971
).
See also
H. J.
Hoffman
,
J. Opt. Soc. Am. B
3
,
253
(
1986
), and references therein.
13.
F. W.
Deeg
and
M. D.
Fayer
,
J. Chem. Phys.
91
,
2269
(
1989
).
See also
M. D.
Fayer
,
IEEE J. Quantum Electron.
QE-22
,
1437
(
1986
) for a comprehensive review of earlier literatures.
14.
D.
Armitage
and
S. M.
Delwart
,
Mol. Cryst. Liq. Cryst.
122
,
59
(
1985
);
I. C.
Khoo
,
Opt. Eng.
28
,
1108
(
1989
).
15.
See, for example,
Y.-X.
Yan
and
K. A.
Nelson
,
J. Chem. Phys.
87
,
6240
(
1987
) for a detailed general theory on other similar materials.
16.
The exact constituents within the bubbles are not determined. See, for example,
G.
Eyring
and
M. D.
Fayer
,
J. Appl. Phys.
55
,
4073
(
1984
) for an interesting and detailed study of bubble grating formation in liquid crystals in their isotropic phases where the bubbles are formed after repeated laser exposures.
17.
F. J.
Kahn
,
Appl. Phys. Lett.
22
,
111
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.