Canonical aberration theory has been developed in previous papers by the author. In the present study, the canonical aberration theory has been used to deal with first‐ and third‐order chromatic aberrations (including position and momentum aberrations at an arbitrary observation plane) for rotationally symmetrical optical systems. All first‐ and third‐order chromatic aberrations have been expressed in canonical matrix representations, which are general in nature and appropriate for computer calculations.

1.
J.
Ximen
,
Optik
84
,
83
(
1990
).
2.
J. Ximen, in Proceedings of the International Symposium on Electron Microscopy, Beijing, 1990, edited by K. H. Kuo (to be published).
3.
J.
Ximen
,
Appl. Phys.
68
,
5963
(
1990
).
4.
J.
Ximen
,
Appl. Phys.
68
,
5968
(
1990
).
5.
W. Glaser, Grundlagen der Elektronenoptik (Springer, Wein, 1952).
6.
J. Ximen, Advances in Electronics and Electron Physics, edited by P. W. Hawkes (Academic, New York, 1986), Suppl 17.
7.
P. W. Hawkes and E. Kasper, Principles of Electron Optics (Academic, London, 1989).
8.
P. A. Sturrock, Static and Dynamic Electron Optics (Cambridge University, Cambridge, England, 1955).
9.
E.
Plies
and
D.
Typke
,
Z. Naturforsch.
33a
,
1361
(
1978
).
10.
V. I. Arnold, Mathematical Methods of Classic Mechanics (Springer, New York, 1978).
11.
H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Menlo Park, CA, 1980).
12.
E.
Goto
and
T.
Soma
,
Optik
48
,
255
(
1977
).
13.
T.
Soma
,
Optik
49
,
255
(
1977
).
14.
H. C.
Chu
and
E.
Munro
,
Optik
62
,
121
(
1982
).
15.
Y.
Li
and
J.
Ximen
,
Optik
61
,
315
(
1982
).
16.
J.
Ximen
,
L.
Zhou
, and
K.
Ai
,
Optik
66
,
19
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.