We present a new analytical potential fluctuations model for the interpretation of current/voltage and capacitance/voltage measurements on spatially inhomogeneous Schottky contacts. A new evaluation schema of current and capacitance barriers permits a quantitative analysis of spatially distributed Schottky barriers. In addition, our analysis shows also that the ideality coefficient n of abrupt Schottky contacts reflects the deformation of the barrier distribution under applied bias; a general temperature dependence for the ideality n is predicted. Our model offers a solution for the so‐called T0 problem. Not only our own measurements on PtSi/Si diodes, but also previously published ideality data for Schottky diodes on Si, GaAs, and InP agree with our theory.

1.
S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), Chaps. 5 and 6.
2.
E. H. Rhoderick and R. H. Williams, Metals Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1988), Chaps. 3 and 4.
3.
J. H.
Werner
,
Appl. Phys. A
47
,
291
(
1988
).
4.
For a critical review on interface states measurements and the influence of minority carriers on current transport at Schottky contacts, see J. H. Werner, in Metallization and Metal-Semiconductor Interfaces, edited by I. P. Batra (Plenum, New York, 1989), p. 235.
5.
H. C.
Card
and
E. H.
Rhoderick
,
J. Phys. D
4
,
1589
(
1971
).
6.
J. H.
Werner
,
K.
Ploog
, and
H. J.
Queisser
,
Phys. Rev. Lett.
57
,
1080
(
1986
).
7.
J. H.
Werner
,
A. F. J.
Levi
,
R. T.
Tung
,
M.
Anzlowar
, and
M.
Pinto
,
Phys. Rev. Lett.
60
,
53
(
1988
).
8.
See E. H. Rhoderick and R. H. Williams, Metal Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1988), p. 113;
see also
R. F.
Broom
,
H. P.
Meier
, and
W.
Walter
,
J. Appl. Phys.
60
,
1833
(
1986
).
9.
V. L.
Rideout
and
C. R.
Crowell
,
Solid-State Electron.
13
,
993
(
1970
).
10.
See E. H. Rhoderick and R. H. Williams, Metal Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1988), p. 118;
see also
C. T.
Sah
,
R. N.
Noyce
, and
W.
Shockley
,
Proc. IRE
45
,
1228
(
1957
).
11.
H. H.
Guttler
and
J. H.
Werner
,
Appl. Phys. Lett.
56
,
1113
(
1990
).
12.
A. J.
Madenach
and
J. H.
Werner
,
Phys. Rev. Lett.
55
,
1212
(
1985
);
A. J.
Madenach
and
J. H.
Werner
,
Phys. Rev. B
38
,
13
150
(
1988
).
13.
J. M.
Andrews
and
M. P.
Lepselter
,
Solid-State Electron.
13
,
1011
(
1970
).
14.
F. A.
Padovani
and
R.
Stratton
,
Solid-State Electron.
9
,
695
(
1966
).
15.
C. Y.
Chang
and
S. M.
Sze
,
Solid-State Electron.
13
,
727
(
1970
).
16.
See E. H. Rhoderick and R. H. Williams, Metal Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1988), pp. 99 and 100.
17.
A. B.
McLean
,
I. M.
Dharmadasa
, and
R. H.
Williams
,
Semicond. Sci. Technol.
1
,
137
(
1986
).
18.
D.
Arnold
and
K.
Hess
,
J. Appl. Phys.
61
,
5178
(
1987
).
19.
J. A.
Nixon
and
J. H.
Davies
,
Phys. Rev. B
41
,
7929
(
1990
).
20.
I.
Ohdomari
,
T. S.
Kuan
, and
K. N.
Tu
,
J. Appl. Phys.
50
,
7020
(
1979
).
21.
I.
Ohdomari
and
K. N.
Tu
,
J. Appl. Phys.
51
,
3735
(
1980
).
22.
R. D.
Thompson
and
K. N.
Tu
,
J. Appl. Phys.
53
,
4285
(
1982
).
23.
T.
Okumura
and
K. N.
Tu
,
J. Appl. Phys.
54
,
922
(
1983
).
24.
M. V.
Schneider
,
A. Y.
Cho
,
E.
Kollberg
, and
H.
Zirath
,
Appl. Phys. Lett.
43
,
558
(
1983
).
25.
T. Q.
Tuy
and
I.
Mojzes
,
Appl. Phys. Lett.
56
,
1652
(
1990
).
26.
J. L.
Freeouf
,
T. N.
Jackson
,
S. E.
Laux
, and
J. M.
Woodall
,
Appl. Phys. Lett.
40
,
634
(
1982
);
J. L.
Freeouf
,
T. N.
Jackson
,
S. E.
Laux
, and
J. M.
Woodall
,
J. Vac. Sci. Technol.
21
,
570
(
1982
).
27.
J.
Werner
and
H.
Strunk
,
J. Phys. (Paris) Colloq.
44
,
C1
-
99
(
1983
).
28.
J. H. Werner, thesis, University of Stuttgart, 1983 (unpublished);
see also J. H. Werner, in Polycrystalline Semiconductors—Physical Properties and Applications, edited by G. Harbeke (Springer, Berlin, 1985), p. 76.
29.
D. J.
Thomson
and
H. C.
Card
,
J. Appl. Phys.
54
,
1976
(
1983
).
30.
G. D.
Mahan
,
J. Appl. Phys.
55
,
980
(
1984
).
31.
W. Grobner and N. Hofreiter, Bestimmte Integrale (Springer, Berlin, 1966), p. 65W.
32.
M.
Cardona
and
N. E.
Christensen
,
Phys. Rev. B
35
,
6182
(
1987
);
M. Cardona and S. Gopalan, in Progress in Electron Properties of Solids, edited by E. Doni, R. Gilanda, G. Pastori Parravicini, and A. Quattropani (Kluwer Academic, Rome, 1989), pp. 51–64.
33.
A direct comparison would be possible on the basis of absolute values of I and C if the doping Nd was exactly known within a few percent.
34.
F. A.
Padovani
and
G. G.
Sumner
,
J. Appl. Phys.
36
,
3744
(
1965
).
35.
N.
Saxena
,
Surf. Sci.
13
,
151
(
1969
).
36.
R.
Hackam
and
P.
Harrop
,
IEEE Trans. Electron Devices
ED-19
,
1231
(
1972
).
37.
B.
Tuck
,
G.
Eftekhari
, and
D. M.
de Cogan
,
J. Phys. D
15
,
457
(
1982
).
38.
P. L.
Hanselaer
,
W. H.
Laflère
,
R. L.
Van Meirhaeghe
, and
F.
Cardon
,
J. Appl. Phys.
56
,
2309
(
1984
).
39.
A. S.
Bhuiyan
,
A.
Martinez
, and
D.
Esteve
,
Thin Solid Films
161
,
93
(
1988
).
40.
M. O.
Aboelfotoh
,
Phys. Rev. B
39
,
5070
(
1989
), Fig. 5.
41.
M. O.
Aboelfotoh
,
A.
Cros
,
B. G.
Svensson
, and
K. N.
Tu
,
Phys. Rev. B
41
,
9819
(
1990
), Fig. 3.
42.
J. H. Werner and H. H. Guttler (unpublished).
43.
F. A. Padovani, in Semiconductors and Semimetals, edited by R. K. Willardsen and A. C. Beer (Academic, New York, 1971), Vol. 7 A, Chap. 2.
44.
J. D.
Levine
,
J. Appl. Phys.
42
,
3991
(
1971
).
45.
C. R.
Crowell
,
Solid-State Electron.
20
,
171
(
1977
).
46.
A.
Singh
,
K. C.
Reinhardt
, and
W. A.
Anderson
,
J. Appl. Phys.
68
,
3475
(
1990
).
47.
Y. P.
Song
,
R. L.
van Meirhaeghe
,
W. H.
Laflère
, and
F.
Cardon
,
Solid-State Electron.
29
,
633
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.