A mathematical model of transport phenomena and epitaxial silicon growth in a pancake chemical vapor deposition reactor is presented for the SiH2Cl2‐H2‐HCl system. Two‐dimensional conservation equations of mass, momentum, energy, and species mass developed in cylindrical coordinates along with appropriate boundary conditions are solved numerically with finite element methods. Streamlines show that the shearing force of the inlet gas flow yields recirculation zones inside the reactor and a separation point on the susceptor. Thermal and concentration boundary layers are seen to develop above the susceptor at pressures between 40 and 150 Torr, and susceptor temperatures between 850 and 1000 °C. When HCl is added to the SiH2Cl2‐H2 system, as it is widely used in the selective epitaxial growth of silicon, the overall growth rate is reduced by silicon substrate etching. It is predicted that growth rates for bulk and selective epitaxy decrease monotonically with increasing HCl/SiH2Cl2 or (HCl)2/SiH2Cl2 feed flow ratios; also, this model predicts an optimal HCl/SiH2Cl2 feed flow ratio at which silicon growth rates on patternless and patterned wafers are equal to each other. The agreement between experimental and predicted growth rate profiles on patternless wafers at different temperatures and flow rates studied is seen to be satisfactory.

1.
J. O. Borland, “Proceedings of the Tenth International Conference on Chemical Vapor Deposition,” edited by G. W. Cullen, 307 (1987).
2.
A.
Ishitani
,
H.
Kitajima
,
K.
Tanno
, and
H.
Tsuya
,
Microelectronics Eng.
4
,
3
(
1986
).
3.
S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era, Process Technology, Vol. 1 (Lattice, Sunset Beach, California, 1986).
4.
C. I.
Drowley
and
M. L.
Hammond
,
Solid State Technol.
33
,
135
(
1990
).
5.
S. M.
Fisher
,
M. L.
Hammond
, and
N. P.
Sandler
,
Solid State Technol.
29
,
107
(
1986
).
6.
J. O.
Borland
and
C. I.
Drowley
,
Solid State Technol.
28
,
141
(
1985
).
7.
C. G.
Tatoudis
and
M. M.
Kastelic
,
Chem. Eng. Sci.
44
,
2049
(
1989
).
8.
M. M. Kastelic, J. Friedrich, I.-H. Oh, C. G. Takoudis, and G. W. Neudeck, Proceedings of the Eleventh International Conference on Chemical Vapor Deposition, edited by K. E. Spear and G. W. Cullen, 318 (1990).
9.
W. A. P.
Claassen
and
J.
Bloem
,
J. Cryst. Growth
50
,
807
(
1980
).
10.
P.
Van der Putte
,
L. J.
Giling
, and
J.
Bloem
,
J. Cryst. Growth
41
,
133
(
1977
).
11.
E. C.
Stassinos
,
T. J.
Anderson
, and
H. H.
Lee
,
J. Cryst. Growth
73
,
21
(
1985
).
12.
V. S.
Ban
and
S. L.
Gilbert
,
J. Electrochem. Soc.
122
,
1382
(
1975
).
13.
K.
Tanno
,
N.
Endo
,
H.
Kitajima
,
Y.
Kurogi
, and
H.
Tsuya
,
Jpn. J. Appl. Phys. Lett.
21
,
564
(
1982
).
14.
I.-H. Oh and C. G. Takoudis, “Proceedings of the Eleventh International Conference on Chemical Vapor Deposition,” edited by K. E. Spear and G. W. Cullen, 75 (1990).
15.
I.-H.
Oh
,
C. G.
Takoudis
, and
G. W.
Neudeck
,
J. Electrochem. Soc.
138
,
554
(
1991
).
16.
I.-H. Oh, Ph.D. dissertation, School of Chemical Engineering, Purdue University, 1991.
17.
M. M. Kastelic, M. S. thesis, School of Chemical Engineering, Purdue University, 1988.
18.
T. J. R. Hughes and A. Brooks, in Finite Element Methods for Convection Dominated Flows, edited by T. J. R. Hughes (ASME Winter Annual Meeting, ASME, New York, 1979).
19.
O. C. Zienkiewicz, R. Loehner, K. Morgan, and S. Nakazawa, in Finite Elements in Fluids, 5, edited by R. H. Gallagher, J. T. Oden, O. C. Zienkiewicz, T. Kawai, and M. Kawahara (John Wiley & Sons, New York, 1984).
20.
J. P.
Narain
,
Computers and Fluids
5
,
61
(
1977
).
21.
D. K. Darooka, M. M. Elsayed, and H. H. Sogin, in Computers in Flow Predictions and Fluid Dynamics Experiments, edited by K. N. Ghia, T. J. Mueller, and B. R. Patel (ASME, New York, 1981), p. 209.
22.
D. G. Studt, B. S. thesis, School of Chemical Engineering, Purdue University, 1988.
This content is only available via PDF.
You do not currently have access to this content.