Pulsed CO2 laser‐induced ablation of solid lithium is studied in the low‐energy‐density regime where no plasma forms on the surface. Li atoms emitted from the surface are characterized using laser‐induced fluorescence and absorption spectroscopy. Atom densities measured as a function of time for different distances from the surface are well described by a full‐range Maxwellian in a center‐of‐mass coordinate system. For 0.9 J/cm2 incident energy density (a fraction being absorbed), the beam velocity and the characteristic temperature are 3×105 cm/s and 8500–10 000 K, respectively. Under these conditions, the number of ablated atoms is about 5×1011 per laser shot. The determined effective beam temperature is much higher than the boiling point of pure lithium. This could be explained considering that a film of oxide with greater vaporization temperature is always present on the surface even in relatively good vacuum conditions.

1.
J. F.
Friichtenicht
,
Rev. Sci. Instrum.
45
,
51
(
1974
).
2.
N. G.
Utterback
,
S. P.
Tang
, and
J. F.
Friichtenicht
,
Phys. Fluids
19
,
900
(
1976
).
3.
A. T.
Prengel
,
J.
Dehaven
,
E. J.
Johnson
, and
P.
Davidovits
,
J. Appl. Phys.
48
,
3551
(
1977
).
4.
J. T.
Cheung
and
H.
Sankur
,
CRC Crit. Rev. Solid State Mater. Sci.
15
,
63
(
1988
).
5.
H. C.
Meng
and
H. J.
Kunre
,
Phys. Fluids
22
,
1082
(
1979
).
6.
J. S.
Bakos
,
G.
Bürger
,
P. N.
Ignacz
,
J.
Szigeti
,
G.
Petravich
,
S.
Zoletnik
, and
D.
Hildebrandt
,
J. Nucl. Mater.
162–164
,
381
(
1989
).
7.
R. S.
Adrain
and
Watson
,
J. Phys. D
17
,
1915
(
1984
).
8.
N. S.
Nogar
,
R. C.
Estler
, and
C. M.
Miller
,
Anal. Chem.
57
,
2441
(
1985
).
9.
J.
Bernholc
and
J. C.
Phillips
,
J. Chem. Phys.
85
,
3258
(
1986
).
10.
M. F.
Cai
,
T. P.
Dzugan
, and
V. E.
Bondybey
,
Chem. Phys. Lett.
155
,
430
(
1989
).
11.
M.
Ebben
,
G.
Meijer
, and
J. J.
ter Meulen
,
Appl. Phys. B
50
,
35
(
1990
).
12.
W.
Sdorra
,
A.
Quentmeier
, and
K.
Niemax
,
Z. Phys. D
13
,
95
(
1989
).
13.
B.
Dubreuil
and
M.
Harnafi
,
Phys. Rev. A
40
,
69
(
1989
).
14.
M.
Harnafi
and
B.
Dubreuil
,
J. Phys. (Paris) Colloq.
C7-48
,
677
(
1987
).
15.
R.
Kelly
and
R. W.
Dreyfus
,
Nucl. Instrum. Methods B
32
,
341
(
1988
);
R.
Kelly
and
R. W.
Dreyfus
,
Surf. Sci.
198
,
263
(
1988
).
16.
K. P.
Selter
and
H. J.
Kunze
,
Phys. Scr.
25
,
929
(
1982
).
17.
R. W.
Dreyfus
,
R.
Kelly
, and
R. E.
Walkup
,
Appl. Phys. Lett.
49
,
1478
(
1986
).
18.
H. F.
Arlinghaus
,
W. F.
Calaway
,
C. E.
Young
,
M. J.
Pellin
,
D. M.
Gruen
, and
L. L.
Chase
,
J. Appl. Phys.
65
,
281
(
1989
).
19.
G. S.
Hurst
,
M. G.
Payne
,
S. D.
Kramer
, and
J. P.
Young
,
Rev. Mod. Phys.
51
,
767
(
1979
).
20.
B.
Dubreuil
and
A.
Catherinot
,
Ann. Phys. (Paris)
7
,
359
(
1982
).
21.
T.
Holstein
,
Phys. Rev.
72
,
1212
(
1947
).
22.
B.
Dubreuil
and
A.
Catherinot
,
Physica C
93
,
408
(
1978
).
23.
S. I.
Anisimov
,
Sov. Phys. JETP
27
,
182
(
1968
).
24.
C. J.
Knight
,
AIAA J.
17
,
519
(
1979
).
25.
S. S.
Penner
and
D.
Wiesenhanh
,
J. Quantum Spectrosc. Radiat. Transfer
34
,
455
(
1985
).
26.
S. G.
Hansen
and
T. E.
Robitaille
,
J. Appl. Phys.
64
,
2122
(
1988
).
27.
J. P.
Zheng
,
Y.
Ying
,
S.
Witanachchi
,
Z. Q.
Huang
,
D. T.
Shaw
, and
H. S.
Kwok
,
Appl. Phys. Lett.
54
,
954
(
1989
).
28.
B. R.
Finke
and
G.
Simon
,
J. Phys. D
23
,
67
(
1990
).
29.
W. W. Duley, CO2 Lasers: Effects and Applications (Academic, New York, 1976).
30.
Handbook of Chemistry and Physics, 36th ed. (Chemical Rubber, Cleveland, 1954).
31.
R. A. Swalin, Thermodynamics of Solids (Wiley, New York, 1962).
32.
R. W.
Dreyfus
,
R. E.
Walkup
, and
R.
Kelly
,
Radiat. Eff.
99
,
683
(
1986
).
33.
This point of the discussion was suggested by the referee.
34.
J. P.
Cowin
,
D. J.
Auerbach
,
C.
Becker
, and
L.
Wharton
,
Surf. Sci.
78
,
545
(
1978
).
35.
I.
NoorBatcha
,
R. R.
Lucchese
, and
Y.
Zeiri
,
J. Chem. Phys.
86
,
5816
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.