Seven fibers of different cross‐sectional shape are studied interferometrically using multiple‐beam Fizeau fringes. These fibers are of circular, rectangular, triangular, trilobal, elliptical, kidney, and dog‐bone cross‐sectional shapes. The areas enclosed under the interference fringe shift is considered to represent the optical path difference integrated across the fiber. This principal is applied to nylon 6 fibers of trilobal cross‐sectional shape. The described method is suitable for the measurement of refractive indices of any fiber with regular or irregular transverse sections. Microinterferograms are given for illustration.

1.
R. C.
Faust
,
Proc. Phys. Soc. B
65
,
48
(
1952
).
2.
N.
Barakat
,
Text. Res. J.
41
,
167
(
1971
).
3.
M.
Pluta
,
J. Microsc.
96
,
309
(
1972
).
4.
A. A.
Hamza
,
Text. Res. J.
50
,
731
(
1980
).
5.
A. A.
Hamza
,
J. Microsc.
142
,
35
(
1986
).
6.
H. A.
El‐Hennawi
,
F.
El‐Diasty
, and
O.
Meshrif
,
J. Appl. Phys.
62
,
4931
(
1987
).
7.
S. C.
Simmens
,
Nature
181
,
1260
(
1958
).
8.
I. M.
Fonda
and
M. M.
El‐Nicklawy
,
Acta Phys. Polon. A
59
,
95
(
1981
).
9.
I. M.
Fouda
and
M. M.
El‐Nicklawy
,
J. Mater. Sci. Lett.
7
,
1136
(
1988
).
10.
I. M.
Fouda
,
M. M.
El‐Nicklawy
, and
K. A.
El‐Farahaty
,
Acta Phys. Polon. A
64
,
577
(
1983
).
11.
N.
Barakat
and
H. A.
El‐Hennawi
,
Text. Res. J.
41
,
391
(
1971
).
12.
I. M.
Fouda
,
T.
El‐Dessouki
, and
K. A.
El‐Farahaty
,
Acta Phys. Polon. A
70
,
177
(
1986
).
13.
I. M.
Fouda
and
K. A.
El‐Farahaty
,
Acta Phys. Polon. A
61
,
137
(
1982
).
14.
A. A.
Hamza
,
T. Z. N.
Sokkar
, and
M. A.
Kabeel
,
J. Phys. D
18
,
1773
(
1985
).
15.
A. A.
Hamza
,
T. Z. N.
Sokkar
, and
M. A.
Kabeel
,
J. Phys. D
19
,
L19
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.