Boron diffusivity in single‐crystal diamond has been investigated. To this aim, a novel method using impedance spectroscopy for the study of the atomic diffusivity in wide‐gap semiconductor has been developed, along with a model for the analysis of the dielectric response function. The advantages of this procedure are discussed. Boron diffusivity in diamond has been determined to be 6.9×10−20 cm2 s−1 at 800 °C. A discussion of the results and a comparison with previous estimates are presented.

1.
M. W.
Geis
,
D. D.
Rathman
,
D. J.
Ehrlich
,
R. A.
Murphy
, and
W. T.
Lindley
,
IEEE Electron Device Lett.
8
,
341
(
1987
).
2.
H. F. Wolf, Silicon Semiconductor Data (Pergamon, New York, 1969).
3.
V. S.
Vasilov
,
Radiat. Eff.
37
,
229
(
1978
).
4.
J. F.
Prins
,
Phys. Rev. B
39
,
3764
(
1989
).
5.
J. F.
Prins
,
Nucl. Instrum. Methods B
35
,
484
(
1988
).
6.
J. F.
Prins
,
Phys. Rev. B
38
,
5576
(
1988
).
7.
J. F.
Prins
,
Appl. Phys. Lett.
15
,
950
(
1982
).
8.
J. R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley‐Interscience, New York, 1987).
9.
A. T. Collins and E. C. Lightowlers, in The Properties of Diamond, edited by J. E. Field (Academic, London, 1979), p. 79.
10.
V. S. Vasilov, A. A. Gipius, and Ye. A. Konorova, Electronic and Optical Processes in Diamond (Nauka, Moscow, 1985), p. 60.
11.
R. F.
Davis
,
Z.
Sitar
,
B. E.
Williams
,
H. S.
Kong
,
H. J.
Kim
,
J. W.
Palmour
,
J. A.
Edmond
,
J.
Ryu
,
J. T.
Glass
, and
C. H.
Carter
Jr.
,
Mater. Sci. Eng. B
1
,
77
(
1988
).
12.
J. C. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1956), Chap. 3.
13.
G. I.
Roberts
and
C. R.
Crowell
,
J. Appl. Phys.
41
,
1767
(
1970
).
14.
G. H.
Glover
,
Solid State Electron.
16
,
973
(
1973
).
15.
D. Narducci, J. J. Cuomo, C. R. Guarnieri, and S. J. Whitehair, Proc. 1989 MRS Fall Meeting (Boston), in press.
This content is only available via PDF.
You do not currently have access to this content.