A systematic Fourier‐transformed infrared‐spectroscopy study of oxygen and carbon in isolated form and as complexes in the silicon lattice has revealed a direct correlation between the decrease of substitutional carbon concentration and the decrease of interstitial oxygen concentration during 750 °C annealing. At a concentration exceeding 2 ppma, carbon was also found to enhance oxide precipitate growth. After completing a three‐step annealing (1100 °C+750 °C+1000 °C), an oxide‐precipitate‐related IR‐absorption band was observed. The changes of the IR‐absorption band were correlated with annealing‐induced changes in the state of carbon. A direct incorporation of carbon into oxide precipitates, and/or carbon interaction with silicon self‐interstitials generated during oxygen precipitation, are suggested to have an effect on reducing lattice strain associated with the oxygen‐precipitation process.

1.
R. C. Newman, in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, Mater. Res. Soc. Symp. Proc. No. 59, edited by J. C. Mikkelsen, Jr., S. P. Peaton, J. W. Corbett, and S. J. Pennycook (MRS, Pittsburgh, PA, 1986), p. 403.
2.
U. Gosele, in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, Mater. Res. Soc. Symp. Proc. No. 59, edited by J. C. Mikkelsen, Jr., S. P. Peaton, J. W. Corbett, and S. J. Pennycook (MRS, Pittsburgh, PA, 1986), p. 419.
3.
F.
Shimura
,
J. P.
Baiardo
, and
P.
Fraundorf
,
Appl. Phys. Lett.
46
,
941
(
1985
).
4.
M.
Ogino
,
Appl. Phys. Lett.
41
,
847
(
1982
).
5.
P.
Fraundorf
,
G. K.
Fraundorf
, and
F.
Shimura
,
J. Appl. Phys.
58
,
4049
(
1985
).
6.
U.
Gosele
and
T. Y.
Tan
,
Appl. Phys.
28
,
79
(
1982
).
7.
B. O. Kolbesen, in Aggregation Phenomena of Point Defects in Silicon, edited by E. Sirtl and J. Goorissen (Electrochemical Society, Pennington, NJ, 1983), p. 155.
8.
T. Y.
Tan
and
C. K.
Kung
,
J. Appl. Phys.
59
,
917
(
1986
).
9.
J.
Leroneelle
,
Phys. Status Solidi A
67
,
177
(
1981
).
10.
S.
Kishino
,
Y.
Matsushita
,
M.
Kanamori
, and
T.
Iizuka
,
Jpn. J. Appl. Phys.
21
,
1
(
1982
).
11.
Q. Sun, J. Lagowski, and H. C. Gatos, in Defects in Electronic Materials, Mater. Res. Soc. Symp. No. 104, edited by M. Stavola, S. J. Pearton, and G. Davies (MRS, Pittsburgh, PA, 1987), p. 205.
12.
A. R.
Bean
and
R. C.
Newman
,
J. Phys. Chem. Solids
32
,
1211
(
1971
).
13.
U. Gosele and T. Y. Tan, in Aggregation Phenomena of Point Defects in Silicon, edited by E. Sirtl and J. Goorissen (Electrochemical Society, Pennington, NJ, 1983), p. 17.
14.
G. D. Warkins, in Radiation Damage in Semiconductors, edited by P. Baruch (Dunod, Paris, 1965), p. 97.
15.
A.
Bourret
,
J.
Thibault‐Desscraux
, and
D. N.
Seidman
,
J. Appl. Phys.
55
,
825
(
1984
).
16.
W. A.
Tiller
and
S.
Oh
,
J. Appl. Phys.
64
,
375
(
1988
).
17.
F.
Shimura
,
H.
Tsuya
, and
T.
Kawamura
,
Appl. Phys. Lett.
37
,
483
(
1980
).
18.
Y.
Matsushita
,
S.
Kishino
, and
M.
Kanamori
,
Jpn. J. Appl. Phys.
19
,
L101
(
1980
).
19.
T. Y.
Tan
and
W. K.
Tice
,
Philos. Mag.
34
,
615
(
1976
).
20.
W. A.
Tiller
,
S.
Hahn
, and
F. A.
Ponce
,
J. Appl. Phys.
59
,
3255
(
1986
).
21.
T. Y. Tan, in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, Mater. Res. Soc. Symp. No. 59, edited by J. C. Mikkelsen, Jr., S. P. Peaton, J. W. Corbett, and S. J. Pennycook (MRS, Pittsburgh, PA, 1986), p. 269.
22.
K.
Yasutake
,
M.
Umeno
, and
H.
Kawabe
,
Phys. Status Solidi A
83
,
207
(
1984
).
23.
A. Bourrent, in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, Mater. Res. Soc. Symp. Proc. No. 59, edited by J. C. Mikkelsen, Jr., S. P. Peaton, J. W. Corbett, and S. J. Pennycook (MRS, Pittsburgh, PA, 1986), p. 223.
24.
H. L. Tsai, in Semiconductor Silicon 1986, edited by H. R. Huff and T. Abe (Electrochemical Society, Pennington, NJ, 1986), p. 790.
25.
M.
Kanamori
and
H.
Tsaya
,
Jpn. J. Appl. Phys.
24
,
557
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.