Polycrystalline HgTe samples have been prepared by taking Hg and Te in stochiometeric compositions. The effect of annealing in mercury has also been studied. The effect of temperature on the electronic conduction mechanism and grain‐boundary states has been observed through the measurement of Hall coefficient RH resistivity (ρ) and Hall mobility μH=(RH/ρ) on the polycrystalline HgTe in the temperature range ∼77–350 K. It is found that in electronic conduction in the low‐temperature range, the conduction is dominated by the thermionic emission of electrons over the grain boundaries. At a critical temperature Tc where the barrier height Φb and, hence the width of the space‐charge region near the grain boundaries tends to zero, a crossover from the barrier limited to the mobility limited resistivity occurs. RH is found to be thermally activated over the temperature range where the conduction mechanism is governed by the grain‐boundary barrier. The experimental results are explained on the basis of a grain‐boundary trapping model combined with two‐phase model. It is found that the mobility and the grain size increased with annealing time. We achieved the carrier mobility of polycrystalline HgTe at 270 K to as much as 11 000 cm2/V s.

1.
M. E.
Cowher
and
T. O.
Sedgwick
,
J. Electrochem. Soc.
119
,
1565
(
1972
).
2.
J. Y. W.
Seto
,
J. Appl. Phys.
46
,
5247
(
1976
).
3.
M. M.
Mandurah
,
K. C.
Saraswat
,
C. R.
Helms
, and
T. I.
Kamins
,
Appl. Phys. Lett.
36
,
683
(
1980
).
4.
M. M.
Mandurah
,
K. C.
Saraswat
,
C. R.
Helms
, and
T. I.
Kamins
,
J. Appl. Phys.
51
,
5755
(
1980
).
5.
T. I.
Kamins
,
J. Appl. Phys.
42
,
4357
(
1971
).
6.
C. H.
Seager
and
T. G.
Castner
,
J. Appl. Phys.
49
,
3879
(
1978
).
7.
G.
Baccayani
,
B.
Ricco
, and
G.
Spadini
,
J. Appl. Phys.
49
,
5565
(
1978
).
8.
T. C.
Harman
,
M. J.
Logan
, and
H. L.
Goering
,
J. Phys. Chem. Solids
7
,
228
(
1958
).
9.
H.
Rodot
and
R.
Triboulet
,
C. R. Acad. Sci.
248
,
938
(
1962
).
10.
W.
Giriat
,
Brit. J. Phys.
15
,
151
(
1964
).
11.
G.
Baccayani
,
B.
Ricco
, and
G.
Spadini
,
J. Appl. Phys.
49
,
5565
(
1978
).
12.
M. W. M. Graef, J. Bloem, L. J. Giling, J. R. Monkowski, and J. W. C. Maes, in Proceedings of the 2nd E.C. Photovoltaic Solar Energy Conference, edited by R. V. Overstracten and W. Palz (Reidel, Dordrecht, 1979).
13.
H.
Berger
,
Phys. Status Solidi
1
,
379
(
1961
).
14.
H.
Berger
,
W.
Kahte
, and
G.
Janiche
,
Phys. Status Solidi
28
,
97
(
1968
).
15.
J.
Volger
,
Phys. Rev.
79
,
1024
(
1950
).
16.
R. H.
Bube
,
Appl. Phys. Lett.
13
,
136
(
1968
).
17.
J. W.
Orton
and
M. J.
Powell
,
Rep. Prog. Phys.
43
,
1263
(
1980
).
18.
A. K.
Ghosh
,
A.
Rose
,
H. P.
Maruska
,
D. J.
Eustace
, and
T.
Feng
,
Appl. Phys. Lett.
37
,
544
(
1980
).
19.
R. L.
Petritz
,
Phys. Rev.
104
,
1508
(
1956
).
20.
H.
Berger
,
Phys. Status Solidi
1
,
379
(
1961
).
21.
T.
Okazaki
,
J. Phys. Chem. Solids
36
,
439
(
1975
).
22.
J. W.
Orton
,
B. J.
Goldsmith
,
M. J.
Powell
, and
J. A.
Champman
,
Appl. Phys. Lett.
37
,
557
(
1980
).
23.
D. K.
Paul
and
S. S.
Mitra
,
Phys. Rev. Lett.
31
,
1000
(
1973
).
24.
H. P.
Maruska
,
A. K.
Ghosh
,
A.
Rose
, and
T.
Feng
,
Appl. Phys. Lett.
36
,
381
(
1980
).
25.
Z.
Dziuba
and
T.
Zakrzewski
,
Phys. Status Solidi
7
,
1019
(
1964
).
26.
H.
Wagini
and
B.
Reiss
,
Phys. Status Solidi
15
,
458
(
1966
).
27.
T. C.
Harman
,
J. Phys. Chem. Solids
25
,
931
(
1964
).
28.
T. C.
Harman
,
M. J.
Logan
, and
H. L.
Goering
,
J. Phys. Chem. Solids
7
,
228
(
1958
).
29.
W.
Giriat
,
Brit. J. Phys.
15
,
151
(
1964
).
30.
T. C. Harman, in Physics and Chemistry of II‐VI Compounds, edited by M. Aven and J. S. Prener (North‐Holland, Amsterdam, 1967), Chap. 15.
31.
H.
Rodot
,
J. Phys. Chem. Solids
25
,
85
(
1964
).
This content is only available via PDF.
You do not currently have access to this content.