The Cu/PtSi metallurgy is studied for reaction and thermal stability using several barrier layers, Cr, Ti, W, and amorphous C. Using preformed PtSi and Cr, Ti, and W barrier layers, Cu is found to react with PtSi around 350 °C. The results are compared with those using similar barriers for the Al/PtSi structure, where an improvement in thermal stability by 50–150 °C is observed. The low thermal stability of the Cu/PtSi structures is attributed to the high affinity of Cu to Si, with the Cu silicide formation starting around 200 °C for a Cu/Si structure. Using an amorphous carbon barrier for the Cu/PtSi structure, a small amount of Cu silicide is observed at 400 °C, but not at 600 °C. Migration of Cu into the structure, however, makes uncertain the effectiveness of the carbon barrier. The results are compared with those of Al/C/PtSi, Al/C/Pd/Si, and C/Cu/SiO2 to understand the mechanism involved.

1.
For the AL‐Si reaction, see, e.g., R. Rosenberg, M. J. Sullivan, and J. K. Howard, in Thin Films, Interdiffusion and Reactions, edited by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978), p. 13.
2.
For the Al‐metal reactions, see, J. E. E. Bagin and J. M. Poate, in Thin Films, Interdiffusion and Reactions, edited by J. M. Poate, K. N. Tu, and J. W. Mayer (Wiley, New York, 1978), p. 305, and references therein.
3.
Handbook of Chemistry and Physics, 66th ed. (CRC, Boca Raton, 1985).
4.
For earlier work on Cu‐Si reaction, see, M.‐A. Nicolet and S. S. Lau, in VLSI Electronics: Microstructure Science, edited by N. Einspruch and G. Larrabee (Academic, New York, 1983), Vol. 6, p. 329 (1983).
5.
Chin‐An
Chang
,
J. Appl. Phys.
66
,
2989
(
1989
).
6.
H. H.
Hosack
,
J. Appl. Phys.
44
,
3476
(
1973
).
7.
Chin‐An
Chang
,
J. Appl. Phys.
61
,
1864
(
1987
).
8.
M.
Wittmer
,
J. Vac. Sci. Technol. A
2
,
273
(
1984
).
9.
M.‐A.
Nicolet
and
M.
Bartur
,
J. Vac. Sci. Technol.
19
,
786
(
1981
).
10.
G.
Salornonsen
,
A.
Olsen
,
Ol.
Lonsjo
, and
T. G.
Finstad
,
J. Appl. Phys.
60
,
1753
(
1986
).
11.
Cy.
Ting
and
M.
Wittmer
,
Thin Solid Films
96
,
327
(
1982
).
12.
Chin‐An
Chang
,
J. Appl. Phys.
63
,
236
(
1988
).
13.
L.
Krusin‐Elbaum
and
M.
Wittmer
,
J. Electrochem. Soc.
135
,
2610
(
1988
).
14.
Chin‐An
Chang
,
J. Appl. Phys.
66
,
5104
(
1989
).
15.
Chin‐An
Chang
,
J. Appl. Phys.
59
,
3116
(
1986
).
16.
Chin‐An
Chang
,
J. Appl. Phys.
66
,
2363
(
1989
).
17.
Chin‐An
Chang
,
J. Appl. Phys.
67
,
566
(
1990
).
18.
Chin‐An
Chang
,
Appl. Phys. Lett.
55
,
1543
(
1989
).
19.
Chin‐An
Chang
,
Appl. Phys. Lett.
54
,
5656
(
1989
).
20.
Chin‐An
Chang
,
D. S.
Yee
, and
R.
Petkie
,
Appl. Phys. Lett.
54
,
2545
(
1989
);
Chin‐An
Chang
,
J. Appl. Phys.
66
,
1163
(
1989
).
21.
J. K.
Howard
,
R. F.
Lever
,
P. J.
Smith
, and
P. S.
Ho
,
J. Vac. Sci. Technol.
13
,
68
(
1976
).
22.
R. W.
Bower
,
Appl. Phys. Lett.
23
,
99
(
1973
).
23.
J. Baglin, V. Brusic, E. Alessandrini, and J. Ziegler, in Application of Ion Beams to Metals, edited by S. T. Picraux, E. P. EerNisse, and F. L. Vook (Plenum, New York, 1974), p. 169.
This content is only available via PDF.
You do not currently have access to this content.