Monte Carlo methods are used to study photoconductive transients in gallium arsenide. It is demonstrated that working with presently established ranges for the Γ‐L coupling coefficient, the existence of a velocity overshoot at moderate fields cannot be exactly predicted. The role of negative velocity electrons in the initial transient for short wavelength excitation is also demonstrated. Details of an actual experiment are described and evaluated against a model which incorporates the Monte Carlo simulation into a transmission line structure with a frequency‐dependent characteristic impedance. The results demonstrate that an appropriately designed experiment can observe subpicosecond carrier transport transients.
REFERENCES
1.
2.
G. Mourou, K. Meyer, J. Whitaker, M. Pessot, R. Grondin, and C. Caruso, in Picosecond Electronics and Optoelectronics II, Vol. 24 in Springer Series in Electronics and Photonics (Springer, Berlin, 1987), p. 40.
3.
M. C.
Nuss
, D. H.
Auston
, and F.
Capasso
, Phys. Rev. Lett.
58
, 2355
(1987
).4.
5.
6.
A.
Evan Iverson
, G. M.
Wysin
, D. L.
Smith
, and A.
Redondo
, Appl. Phys. Lett.
52
, 2148
(1988
).7.
G. M. Wysin, B. L. Smith, and A. Redondo (unpublished).
8.
9.
10.
11.
R. O.
Grondin
, P. A.
Blakey
, and J. R.
East
, IEEE Electron. Devices
31
, 21
(1984
).12.
13.
14.
G.
Bernstein
and D. K.
Ferry
, Superlattices and Microstructures
2
, 373
(1986
).15.
M.
Heiblum
, I. M.
Anderson
, and C. M.
Knoedler
, Appl. Phys. Lett.
49
, 207
(1986
).16.
J. R.
Hayes
, A. F. J.
Levi
, and W.
Wiegmann
, Electron. Lett.
20
, 851
(1984
).17.
C. V.
Shank
, R. L.
Fork
, B. I.
Greene
, F. K.
Reinhart
, and R. A.
Logan
, Appl. Phys. Lett.
38
, 104
(1981
).18.
19.
20.
P. M.
Smith
, M.
Inoue
, and J.
Frey
, Appl. Phys. Lett.
37
, 797
(1980
).21.
T. H.
Windhorn
, T. J.
Roth
, L. M.
Zinkiewicz
, O. L.
Gaddy
, and G. E.
Stillman
, Appl. Phys. Lett.
40
, 513
(1982
).22.
23.
24.
J.
Shah
, B.
Deveaud
, T. C.
Damen
, W. T.
Tsang
, A. C.
Gossard
, and P.
Lugli
, Phys. Rev. Lett.
59
, 2222
(1987
).25.
26.
J. A.
Valdmanis
, G. A.
Mourou
, C. W.
Gabel
, IEEE J. Quantum Electron.
QE‐19
, 664
, (1983
).27.
28.
S. J.
Allen
, C. L.
Allyn
, H. M.
Cox
, F.
DeRosa
, and G. E.
Mahoney
, Appl. Phys. Lett.
42
, 96
(1983
).29.
30.
31.
M.
Rieger
, P.
Kocevar
, P.
Bordone
, P.
Lugli
, and L.
Reggiani
, Solid‐State Electron.
31
, 687
(1988
).32.
33.
34.
A. J.
Taylor
, D. J.
Erskine
, and C. L.
Tang
, J. Opt. Am. B
2
, 663
(1985
).35.
V. N.
Freire
, A. R.
Vasconcellos
, and R.
Luzzi
, Solid State Commun.
66
, 683
(1988
).36.
K. E.
Meyer
, M.
Pessot
, G.
Mourou
, R. O.
Grondin
, and S. N.
Chamoun
, Appl. Phys. Lett.
53
, 2254
(1988
).37.
K. E. Meyer, Ph.D. dissertation, University of Rochester, 1988.
38.
K. Meyer, and G. Mourou, in Picosecond Electronics and Optoelectronics, edited by G. Mourou, D. Bloom, and C. Lee (Springer, Berlin, 1985), Vol. 21.
39.
J. A. Valdmanis, Ph.D. dissertation, University of Rochester, 1983.
40.
D. H.
Auston
, K. P.
Cheung
, J. A.
Valdmanis
, and D. A.
Kleinman
, Phys. Rev. Lett.
53
, 1555
(1984
).41.
E. N. Arnold, M.S. thesis, Arizona State University, 1988.
42.
J. F.
Whitaker
, R.
Sobolewski
, D.
Dykaar
, T.
Hsiang
, and G.
Mourou
, IEEE Trans. Microwave Theory Tech.
MTT‐36
, 277
(1988
).
This content is only available via PDF.
© 1989 American Institute of Physics.
1989
American Institute of Physics
You do not currently have access to this content.