The quantitative analogies that have been previously established [J. Appl. Phys. 65, 814 (1989)] between electron wave propagation in semiconductors and optical wave propagation in dielectrics may be used to translate thin‐film optical device designs into semiconductor superlattice device designs. The procedure for this direct mapping is also described in the above reference. The resulting designs, however, have compositions that are not constrained to be within a usable compositional range and they have layer thicknesses that are not constrained to be integer multiples of a monolayer thickness. In the present work, a systematic design procedure is presented that includes these required practical constraints. This procedure is then applied to the design of Ga1−xAlxAs superlattice narrow interference filters. For pass kinetic energies in the range of 0.14–0.20 eV, compositions (values of x) and numbers of monolayer thicknesses needed to produce quarter‐wavelength layers are calculated. The detailed design of an example narrow bandpass (15.4 meV) filter with a pass electron energy of 0.20 eV is presented.

1.
L.
Esaki
and
R.
Tsu
,
IBM J. Res. Dev.
13
,
61
(
1970
).
2.
M.
Heiblum
,
M. I.
Nathan
,
D. C.
Thomas
, and
C. M.
Knoedler
,
Phys. Rev. Lett.
55
,
2200
(
1983
).
3.
M.
Heiblum
and
L. F.
Eastman
,
Sci. Am.
255
,
103
(
1987
).
4.
M.
Heiblum
,
Opt. News
14
,
13
(
1988
).
5.
T. K.
Gaylord
and
K. F.
Brennan
,
J. Appl. Phys.
65
,
814
(
1989
).
6.
M.
Heiblum
,
M. V.
Fischetti
,
W. P.
Dumke
,
D. J.
Frank
,
I. M.
Anderson
, and
C. M.
Knoedler
,
Phys. Rev. Lett.
58
,
816
(
1987
).
7.
S.
Sen
,
F.
Capasso
,
A. C.
Gossard
,
R. A.
Spah
,
A. L.
Hutchinson
, and
S. N. G.
Chu
,
Appl. Phys. Lett.
51
,
1428
(
1987
).
8.
R. C.
Potter
and
A. A.
Lakhani
,
Appl. Phys. Lett.
52
,
1349
(
1988
).
9.
J. R.
Hayes
,
P.
England
, and
J. P.
Harbison
,
Appl. Phys. Lett.
52
,
1578
(
1988
).
10.
T. K.
Gaylord
and
K. F.
Brennan
,
Appl. Phys. Lett.
53
,
2047
(
1988
).
11.
C. J.
Summers
and
K. F.
Brennan
,
Appl. Phys. Lett.
48
,
806
(
1986
).
12.
K. F.
Brennan
and
C. J.
Summers
,
J. Appl. Phys.
61
,
5410
(
1987
).
13.
K. F.
Brennan
and
C. J.
Summers
,
IEEE J. Quantum Electron.
QE‐23
,
320
(
1987
).
14.
M. I.
Nathan
and
M.
Heiblum
,
IEEE Spectrum
23
,
45
(
1986
).
15.
G. A. Nagy and M. Szilágyi, Introduction to the Theory of Space‐Charge Optics (Halsted, New York, 1974).
16.
P. Dahl, Introduction to Electron and Ion Optics (Academic, New York, 1973).
17.
C. M.
Wu
and
E. S.
Yang
,
Solid‐State Electron.
22
,
241
(
1979
).
18.
A. N.
Khondker
,
M. R.
Khan
, and
A. F. M.
Anwar
,
J. Appl. Phys.
63
,
5191
(
1988
).
19.
O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955).
20.
A. Thelen, Physics of Thin Films, edited by G. Hass and R. E. Thun (Academic, New York, 1969), Vol. 5, p. 47.
21.
J. A. Dobrowolski, Handbook of Optics, edited by W. G. Driscoll (McGraw‐Hill, New York, 1978), Sec. 8.
22.
H. A. Macleod, Thin‐Film Optical Filters (Macmillan, New York, 1986).
23.
M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamort, Oxford, 1980), p. 55.
24.
R. E. Collin, Field Theory of Guided Waves (McGraw‐Hill, New York, 1960), p. 79.
25.
H. C.
Casey
, Jr.
and
M. B.
Panish
,
J. Appl. Phys.
40
,
4910
(
1969
).
26.
S.
Adachi
,
J. Appl. Phys.
58
,
R1
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.