This paper studies the determination of third‐ and fourth‐order bounds on the effective conductivity σe of a composite material composed of aligned, infinitely long, identical, partially penetrable, circular cylinders of conductivity σ2 randomly distributed throughout a matrix of conductivity σ1. Both bounds involve the microstructural parameter ζ2 which is a multifold integral that depends upon S3, the three‐point probability function of the composite. This key integral ζ2 is computed (for the possible range of cylinder volume fraction φ2) using a Monte Carlo simulation technique for the penetrable‐concentric‐shell model in which cylinders are distributed with an arbitrary degree of impenetrability λ, 0≤λ≤1. Results for the limiting cases λ=0 (‘‘fully penetrable’’ or randomly centered cylinders) and λ=1 (‘‘totally impenetrable’’ cylinders) compare very favorably with theoretical predictions made by Torquato and Beasley [Int. J. Eng. Sci. 24, 415 (1986)] and by Torquato and Lado [Proc. R. Soc. London Ser. A 417, 59 (1988)], respectively. Results are also reported for intermediate values of λ: cases which heretofore have not been examined. For a wide range of α=σ21 (conductivity ratio) and φ2, the third‐order bounds on σe significantly improve upon second‐order bounds which just depend upon φ2. The fourth‐order bounds are, in turn, narrower than the third‐order bounds. Moreover, when the cylinders are highly conducting (α≫1), the fourth‐order lower bound provides an excellent estimate of the effective conductivity for a wide range of volume fractions.

1.
Z.
Hashin
,
J. Appl. Mech.
50
,
481
(
1983
).
2.
S.
Torquato
,
Rev. Chem. Eng.
4
,
151
(
1987
).
3.
J. G.
Berryman
,
J. Acoust. Soc. Am.
69
,
416
(
1981
).
4.
G. W.
Milton
,
J. Appl. Phys.
52
,
5294
(
1981
).
5.
S.
Torquato
,
J. Appl. Phys.
58
,
3790
(
1985
).
6.
Z. Hashin, in Mechanics of Composite Materials, edited by F. W. Wendt, H. Liebowitz, and N. Perrone (Pergamon, New York, 1970), p. 201.
7.
G. W.
Milton
,
J. Mech. Phys. Solids
30
,
177
(
1982
).
8.
N. Silnutzer, Ph.D. thesis (University of Pennsylvania, Philadelphia, 1972).
9.
S.
Torquato
and
G.
Stell
,
J. Chem. Phys.
77
,
2071
(
1982
).
10.
S.
Torquato
and
G.
Stell
,
Lett. Appl. Eng. Sci.
23
,
375
(
1985
);
S.
Torquato
and
F.
Lado
,
Phys. Rev. B
33
,
6428
(
1986
);
S.
Torquato
and
F.
Lado
,
J. Appl. Mech.
55
,
347
(
1988
).
11.
S.
Torquato
and
J. D.
Beasley
,
Int. J. Eng. Sci.
24
,
415
(
1986
).
12.
S.
Torquato
and
F.
Lado
,
Proc. R. Soc. London Ser. A
417
,
59
(
1988
).
13.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 1976).
14.
J. G.
Berryman
,
J. Appl. Phys.
57
,
2374
(
1985
);
J. G.
Berryman
,
J. Comput. Phys.
75
,
86
(
1988
).
15.
B. J.
Alder
,
J. J.
Weiss
, and
H. L.
Strauss
,
Phys. Rev. A
7
,
281
(
1973
).
16.
P.
Smith
and
S.
Torquato
,
J. Comput. Phys.
76
,
176
(
1988
).
17.
S.
Torquato
,
J. Chem. Phys.
81
,
5079
(
1984
);
S.
Torquato
,
84
,
6345
(
1986
).,
J. Chem. Phys.
18.
S.
Kirkpatrick
,
Rev. Mod. Phys.
45
,
574
(
1973
).
19.
B.
Widom
,
J. Chem. Phys.
44
,
3888
(
1966
);
B.
Widom
,
58
,
4043
(
1973
).,
J. Chem. Phys.
20.
J.
Feder
,
J. Theor. Biol.
87
,
237
(
1980
).
21.
P. P. Durand and L. H. Ungar, Int. J. Numer. Methods Eng. (in press).
22.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
23.
J. M.
Haile
,
C.
Massobrio
, and
S.
Torquato
,
J. Chem. Phys.
83
,
4075
(
1985
).
24.
S. B.
Lee
and
S.
Torquato
,
J. Chem. Phys.
89
,
3258
(
1988
).
25.
G. S.
Fishman
and
L. R.
Moore
,
J. Am. Stat. Assoc.
77
,
129
(
1982
).
26.
J. D.
Beasley
and
S.
Torquato
,
J. Appl. Phys.
60
,
3576
(
1986
).
27.
A. S.
Sangani
and
C.
Yao
,
Phys. Fluids
31
,
2426
(
1988
).
28.
S. B.
Lee
and
S.
Torquato
,
J. Chem. Phys.
89
,
6427
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.