A Monte Carlo code has been developed to study electron transport at 4.2 K in AlGaAs/GaAs tunneling hot electron transfer amplifier devices. Our model includes the effects of coupled plasmon‐phonon interaction and the Pauli exclusion principle along with more conventional features. The numerical results demonstrate the existence of nearly ballistic transport in the base and the collector barrier, and confirm that the experiments by Heiblum etal. [Phys. Rev. Lett. 55, 2200 (1985)] indeed measure the exact energy distribution of injected ballistic electrons. The device characteristics such as transfer ratio and transit time have also been investigated in detail and are discussed along with the optimum operating conditions.

1.
M.
Heiblum
,
M. I.
Nathan
,
D. C.
Thomas
, and
C. M.
Knoedler
,
Phys. Rev. Lett.
55
,
2200
(
1985
).
2.
A. F. J.
Levi
,
J. R.
Hayes
,
P. M.
Platzman
, and
W.
Wiegmann
,
Phys. Rev. Lett.
55
,
2071
(
1985
).
3.
T.
Wang
,
K.
Hess
, and
G. J.
Iafrate
,
J. Appl. Phys.
59
,
2125
(
1986
).
4.
S.
Imanaga
,
H.
Kawai
,
K.
Kaneko
, and
N.
Watanabe
,
J. Appl. Phys.
59
,
3281
(
1986
).
5.
A. P.
Long
,
P. H.
Beton
, and
M. J.
Kelly
,
Semicond. Sci. Technol.
1
,
63
(
1986
).
6.
J.
Xu
and
M.
Shur
,
J. Appl. Phys.
62
,
3816
(
1987
).
7.
M.
Kuzuhara
,
K.
Kim
,
D.
Arnold
, and
K.
Hess
,
Appl. Phys. Lett.
52
,
1252
(
1988
).
8.
D. J.
Wolford
,
T. F.
Keuch
,
J. A.
Bradley
,
M. A.
Gell
,
D.
Ninno
, and
M. J.
Jaros
,
J. Vac. Sci. Technol. B
4
,
1043
(
1986
).
9.
K.
Kim
,
K.
Hess
, and
F.
Capasso
,
Appl. Phys. Lett.
51
,
508
(
1987
);
K.
Kim
and
K.
Hess
,
Solid‐State Electron.
31
,
877
(
1988
).
10.
M. E.
Kim
,
A.
Das
, and
S. D.
Senturia
,
Phys. Rev. B
18
,
6890
(
1978
).
11.
S. E.
Kumekov
and
V. I.
Perel
,
Sov. Phys. Semicond.
16
,
1291
(
1983
).
12.
P.
Lugli
and
D. K.
Ferry
,
IEEE Electron Device Lett.
EDL‐6
,
25
(
1985
).
13.
See, for example, B. K. Ridley, Quantum Processes in Semiconductors (Clarendon, Press, Oxford, 1982).
14.
See, for example,
Y.
Ando
and
T.
Itoh
,
J. Appl. Phys.
61
,
1497
(
1987
).
15.
M.
Heiblum
,
M. V.
Fischetti
,
W. P.
Dumke
,
D. J.
Frank
,
I. M.
Anderson
,
C. M.
Knoedler
, and
L.
Osterling
,
Phys. Rev. Lett.
58
,
816
(
1987
).
16.
M.
Heiblum
,
E.
Calleja
,
I. M.
Anderson
,
W. P.
Dumke
,
C. M.
Knoedler
, and
L.
Osterling
,
Phys. Rev. Lett.
56
,
2854
(
1986
).
17.
A. R.
Bonnefoi
,
D. H.
Chow
, and
T. C.
McGill
,
J. Appl. Phys.
62
,
3836
(
1987
).
18.
The base transfer ratio can be inferred from the total transfer ratio Ic/Ie when positive Vcb is applied. When the interface is graded, it is difficult to interpret due to the change in the barrier height for positive Vcb. In the experiment, Ic/Ie changes from 0.5 to 0.75 as Vcb varies from C to 1.0 V (Ref). 1. The simulation give Ic/Ie from ∼0.5 to ∼0.65. Considering the fact that the interface is graded in the experiment, which results in the reduced effective barrier height for positive Vcb. the base transfer ratio agrees closely in both experiment and simulation.
19.
J.
Shah
,
A.
Pinczuk
,
A. C.
Gossard
, and
W.
Wiegmann
,
Phys. Rev. Lett.
54
,
2045
(
1985
);
J.
Shah
,
IEEE J. Quantum Electron.
QE‐22
,
1728
(
1986
).
20.
G. F.
Giuliani
and
I. J.
Quinn
,
Phys. Rev. B
26
,
4421
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.