A quartz crystal microbalance has been used to measure the rates of photochemical deposition from Cr(CO)6, Mo(CO)6, and W(CO)6 induced by a focused frequency‐doubled argon ion laser (257 nm). The kinetic data indicate that deposition occurs via single‐photon dissociation of the hexacarbonyl in the gas phase, yielding products that subsequently condense on the substrate surface. This interpretation is supported by the observation of material deposited well outside the area of the substrate that is directly illuminated by the laser beam. A calculation of the deposit thickness versus radial distance from the center of the laser beam, using a simple gas‐phase model of the deposition process, provides an adequate fit to the observed thickness profile of a typical deposit. The presence of ripples in material deposited within the focal spot of the laser beam suggests that secondary photoinitiated dissociation of the gas‐phase photoproducts occurs after they condense on the substrate surface. Adsorption measurements performed with the microbalance show that the group 6 hexacarbonyls do not adsorb on SiO2 and nickel surfaces under the conditions of the deposition experiments, up to their respective room‐temperature vapor pressures.

1.
D. J.
Ehrlich
,
R. M.
Osgood
, Jr.
,
D. J.
Silversmith
, and
T. F.
Deutsch
,
IEEE Electron Device Lett.
EDL‐1
,
101
(
1980
).
2.
J. N.
Randall
,
D. J.
Ehrlich
, and
J. Y.
Tsao
,
J. Vac. Sci. Technol. B
3
,
262
(
1985
).
3.
J. Y.
Tsao
,
D. J.
Ehrlich
,
D. J.
Silversmith
, and
R. W.
Mountain
,
IEEE Electron Device Lett.
EDL‐3
,
164
(
1982
).
4.
J. Y.
Tsao
,
R. A.
Becker
,
D. J.
Ehrlich
, and
F. J.
Leonberger
,
Appl. Phys. Lett.
42
,
559
(
1983
).
5.
D. J.
Ehrlich
and
J. Y.
Tsao
,
J. Vac. Sci. Technol. B
1
,
969
(
1983
).
6.
D. J.
Ehrlich
,
R. M.
Osgood
, Jr.
, and
T. F.
Deutsch
,
IEEE J. Quantum Electron
QE‐16
,
1233
(
1980
).
7.
T. H.
Wood
,
J. C.
White
, and
B. A.
Thacker
,
Appl. Phys. Lett.
42
,
408
(
1983
).
8.
C. J.
Chen
,
J. Vac. Sci. Technol. A
5
,
3386
(
1987
).
9.
R. R.
Krchnavek
,
H. H.
Gilgen
,
J. C.
Chen
,
P. S.
Shaw
,
T. J.
Licata
, and
R. M.
Osgood
, Jr.
,
J. Vac. Sci. Technol. B
5
,
20
(
1987
).
10.
R. L.
Jackson
and
G. W.
Tyndall
,
J. Appl. Phys.
62
,
315
(
1987
).
11.
D. J.
Ehrlich
,
R. M.
Osgood
, Jr.
, and
T. F.
Deutsch
,
J. Electrochem. Soc.
128
,
2039
(
1981
).
12.
M. S.
Chiu
,
Y. G.
Tseng
, and
Y. K.
Ku
,
Opt. Lett.
10
,
113
(
1985
).
13.
C. R.
Jones
,
F. A.
Houle
,
C. A.
Kovac
, and
T. H.
Baum
,
Appl. Phys. Lett.
46
,
97
(
1985
).
14.
Q.
Mingxin
,
R.
Monot
, and
H.
van den Bergh
,
Sci. Sin. Ser. A
27
,
531
(
1984
).
15.
F. A.
Houle
,
R. J.
Wilson
, and
T. H.
Baum
,
J. Vac. Sci. Technol. A
4
,
2452
(
1986
).
16.
C. J.
Chen
and
R. M.
Osgood
,
J. Chem. Phys.
81
,
327
(
1984
).
17.
J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds (Academic, London, 1970), pp. 446 and 447.
18.
D. J.
Ehrlich
and
R. M.
Osgood
, Jr.
,
Chem. Phys. Lett.
79
,
381
(
1981
).
19.
G.
Pilcher
,
M. J.
Ware
, and
D. A.
Pittam
,
J. Less‐Common Met.
42
,
223
(
1975
).
20.
G. W.
Tyndall
and
R. L.
Jackson
,
J. Am. Chem. Soc.
109
,
582
(
1987
);
J. Chem. Phys. (to be published).
21.
G. W. Tyndall and R. L. Jackson (unpublished).
22.
T. M.
Mayer
,
G. J.
Fisanick
, and
T. S.
Eichelberger
IV
,
J. Appl. Phys.
53
,
8462
(
1982
).
23.
D. R.
Skinner
and
R. E.
Whitcher
,
J. Phys. E
5
,
237
(
1972
).
24.
S. J. R.
Brueck
and
D. J.
Ehrlich
,
Phys. Rev. Lett.
48
,
1678
(
1982
).
25.
R. J.
Wilson
and
F. A.
Houle
,
Phys. Rev. Lett.
55
,
2184
(
1985
).
26.
G.
Yokoyama
,
F.
Uesugi
,
S.
Kishida
, and
K.
Washio
,
Appl. Phys. A
37
,
25
(
1985
).
27.
N. S.
Gluck
,
G. J.
Wolga
,
C. E.
Bartosch
,
W.
Ho
, and
Z.
Ying
,
J. Appl. Phys.
61
,
998
(
1987
).
28.
G.
Sauerbrey
,
Z. Phys.
155
,
206
(
1959
).
29.
C.‐S.
Lu
and
O.
Lewis
,
J. Appl. Phys.
43
,
4385
(
1972
).
30.
H. K.
Pulker
,
E.
Benes
,
D.
Hammer
, and
E.
Sollner
,
Thin Solid Films
32
,
27
(
1976
).
31.
The deposits from the hexacarbonyls are ∼500 μm in diameter, but we used a point model (see Ref. 10) to determine the mass from QCM measurements. Because of the relatively broad radial‐sensitivity function of our crystals, however, the error involved in treating the deposit as a point mass is minimal.
32.
E.
Guglielminotti
,
J. Mol. Catal.
13
,
207
(
1981
).
33.
See, for example,
T. H.
Baum
,
J. Electrochem. Soc.
134
,
2616
(
1987
).
34.
See, for example,
J. Y.
Tsao
and
D. J.
Ehrlich
,
J. Chem. Phys.
81
,
4620
(
1984
).
35.
See, for example,
S. D.
Allen
,
R. Y.
Jan
,
S. M.
Mazuk
, and
S.
Vernon
,
J. Appl. Phys.
58
,
327
(
1985
).
36.
M.
Wrighton
,
Chem. Rev.
74
,
401
(
1974
).
37.
G.
Nathanson
,
B.
Gitlin
,
A. M.
Rosan
, and
J. T.
Yardley
,
J. Chem. Phys.
74
,
361
(
1981
).
38.
W.
Tumas
,
B.
Gitlin
,
A. M.
Rosan
, and
J. T.
Yardley
,
J. Am. Chem. Soc.
104
,
55
(
1982
).
39.
T. A.
Seder
,
A. J.
Ouderkirk
, and
E.
Weitz
,
J. Chem. Phys.
85
,
1977
(
1986
).
40.
T. R.
Fletcher
and
R. N.
Rosenfeld
,
J. Am. Chem. Soc.
107
,
2203
(
1985
).
41.
T. A.
Seder
,
S. P.
Church
, and
E.
Weitz
,
J. Am. Chem. Soc.
108
,
4721
(
1986
).
42.
T. R.
Fletcher
and
R. N.
Rosenfeld
,
J. Am. Chem. Soc.
108
,
1686
(
1986
).
43.
W. H.
Breckenridge
and
G. M.
Stewart
,
J. Am. Chem. Soc.
108
,
364
(
1986
).
44.
N. S.
Gluck
,
Z.
Ying
,
C. E.
Bartosch
, and
W.
Ho
,
J. Chem. Phys.
62
,
281
(
1987
).
45.
Single‐photon dissociation of Cr(CO)6 in the gas phase at 248 nm yields predominantly Cr(CO)4 (see Refs. 38, 40, and 41). Single‐photon dissociation of Mo(CO)6 and W(CO)6 in the gas phase at wavelengths near 257 nm has not been reported, but each has a higher average metal‐CO bond energy than Cr(CO)6 (see Ref. 19), so it is doubtful that they will dissociate more extensively than Cr(CO)6 under the same photolysis conditions.
46.
K. A. Singmaster, F. A. Houle, and R. J. Wilson (unpublished).
This content is only available via PDF.
You do not currently have access to this content.