We have measured coercive field and switching voltage versus thickness in PbZr0.54Ti0.46O3 thin (0.15–0.50 μm) films, together with switching times and current transient shapes versus field and temperature. The results show activation fields of order 120 kV/cm at room temperature, threshold voltages below 1.3 V, and switching speeds faster than 100 ns, demonstrating that fast, nonvolatile memories can be constructed that are compatible with standard silicon or GaAs integrated circuit voltage levels, without the need for an internal voltage pump. The displacement current transient data yield 2.5 as the dimensionality of domain growth if one‐step intial nucleation rate is assumed, and are compatible with the theory of Ishibashi, yielding imaxtmax/Ps=1.65±0.23, in comparison with the predicted 1.646. The switching time exhibits an activation field dependence upon both voltage and temperature through a single reduced parameter (TCT)(VTC),1 in accord with the theory of Orihara and Ishibashi.

1.
T.
Nakagawa
,
J.
Yamaguchi
,
T.
Usuki
,
Y.
Matsui
,
M.
Okuyama
, and
Y.
Hamakawa
,
Jpn. J. Appl. Phys.
18
,
897
(
1979
);
D. W.
Chapman
,
J. Appl. Phys.
40
,
2381
(
1969
);
R. B.
Atkin
,
Ferroelectrics
3
,
213
(
1972
).
2.
M. Sayer, in Proceedings of the 6th Symposium on Applied Ferroelectricity (IEEE, New York, 1986), p. 559.
3.
M.
Ishida
,
H.
Matsunami
, and
T.
Tanaka
,
J. Appl. Phys.
48
,
952
(
1977
);
M.
Ishida
,
H.
Matsunami
, and
T.
Tanaka
,
Appl. Phys. Lett.
31
,
433
(
1977
).
4.
E. Fatuzzo and W. Merz, Ferroelectricity (North‐Holland, Amsterdam, 1967).
5.
H. F.
Kay
and
J. W.
Dunn
,
Philos. Mag.
7
,
2027
(
1962
).
6.
Y.
Ishibashi
and
Y.
Takagi
,
J. Phys. Soc. Jpn.
31
,
506
(
1971
);
Y.
Ishibashi
,
Jpn. J. Appl. Phys.
24
,
126
(
1986
).
7.
K.
Dimmler
,
M.
Parris
,
D.
Butler
,
S.
Eaton
,
B.
Pouligny
,
J. F.
Scott
, and
Y.
Ishibashi
,
J. Appl. Phys.
61
,
5467
(
1987
).
8.
M.
Avrami
,
J. Chem. Phys.
7
,
1108
(
1939
)
M.
Avrami
,
8
,
212
(
1940
); ,
J. Chem. Phys.
M.
Avrami
,
9
,
177
(
1941
).,
J. Chem. Phys.
9.
E.
Fatuzzo
,
Phys. Rev.
116
,
1999
(
1962
).
10.
C.
Araujo
,
J. F.
Scott
,
R. B.
Godfrey
, and
L.
McMillan
,
Appl. Phys. Lett.
48
,
1439
(
1986
).
11.
R. R.
Mehta
,
B. D.
Silverman
, and
J. T.
Jacobs
,
J. Appl. Phys.
44
,
3379
(
1973
).
12.
R. B.
Godfrey
,
J. F.
Scott
,
H. B.
Meadows
,
M.
Golabi
,
C.
Araujo
, and
L.
McMillan
,
Ferroelectrics Lett.
5
,
167
(
1986
);
J. F. Scott, R. B. Godfrey, C. A. Araujo, L. D. McMillan, H. B. Meadows, and M. Golabi, in Proceedings of the 6th Symposium on Applied Ferroelectricity (IEEE, New York, 1986), p. 569
13.
J. F.
Scott
,
B.
Pouligny
,
M.
Parris
,
K.
Dimmler
,
D.
Butler
, and
S.
Eaton
,
J. Appl. Phys.
62
,
4510
(
1987
).
14.
This value compares poorly with that of 12 kV/cm at lower fields in ceramic PbZr0.54Ti0.46O3 by
M.
Takahashi
,
Jpn. J. Appl. Phys.
9
,
1236
(
1970
).
15.
J. F. Scott, H. M. Duiker, P. D. Beale, B. Pouligny, K. Dimmler, M. Parris, D. Butler, and S. Eaton, Physica B/C (in press),
16.
A.
Fouskova
,
Czech. J. Phys. B
20
,
790
(
1970
);
A.
Fouskova
,
J. Phys. Soc. Jpn.
20
,
1625
(
1965
).
17.
H. L.
Stadler
and
P. J.
Zachmanidis
,
J. Appl. Phys.
34
,
3255
(
1963
);
H. L.
Stadler
and
P. J.
Zachmanidis
,
33
,
3487
(
1962
); ,
J. Appl. Phys.
H. L.
Stadler
and
P. J.
Zachmanidis
,
29
,
1485
(
1958
).,
J. Appl. Phys.
18.
H.
Orihara
and
Y.
Ishibashi
,
Jpn. J. Appl. Phys.
24
,
902
(
1985
).
19.
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).
20.
Unlike the case (Ref. 19) of DOBAMBC or TGS, it is not possible to approximate ts, over a wide range of fields E as ts = AE−nτ+m, because the effective exponent n depends strongly upon temperature; i.e., the field dependence and temperature dependence are not separable. However, a temperature exponent can be obtained, as in Fig. 6, if field E is kept constant,
21.
A.
Hadni
and
R.
Thomas
,
Ferroelectrics
59
,
221
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.