We derive optimal bounds on the effective conductivity tensor of polycrystalline aggregates by introducing an appropriate null‐Lagrangian that is rotationally invariant. For isotropic aggregates of uniaxial crystals an outstanding conjecture of Schulgasser is proven, namely that the lowest possible effective conductivity of isotropic aggregates of uniaxial crystals is attained by a composite sphere assemblage, in which the crystal axis is directed radially outwards in each sphere. By laminating this sphere assemblage with the original crystal we obtain anisotropic composites that are extremal, i.e., attaining our bounds. These, together with other results established here, give a partial characterization of the set of all possible effective tensors of polycrystalline aggregates. The same general method is used to prove a conjectured phase interchange inequality for isotropic composites of two isotropic phases. This inequality correlates the effective conductivity of the composite with the effective tensor when the phases are interchanged. It leads to optimal bounds on the effective conductivity when another effective constant, such as the effective diffusion coefficient, has been measured, or when one has information about ζ1 which is a parameter characteristic of the microgeometry, or when one knows the material is symmetric, i.e., invariant under phase interchange like a three‐dimensional checkerboard.

1.
W. Voigt, Lehrkuch der Krystallphysik (Teuber, Leipzig, 1928), p. 410.
2.
A.
Reuss
,
Z. Angew. Math. Mech.
9
,
49
(
1929
).
3.
Z.
Hashin
and
S.
Shtrikman
,
Phys. Rev.
130
,
129
(
1963
).
4.
K.
Schulgasser
,
J. Phys. C
10
,
407
(
1977
).
5.
K.
Schulgasser
,
J. Appl. Phys.
54
,
1380
(
1982
).
6.
Z.
Hashin
and
S.
Shtrikman
,
J. Appl. Phys.
33
,
3125
(
1962
).
7.
G. W.
Milton
,
J. Appl. Phys.
52
,
5286
(
1981
).
8.
J. B.
Keller
,
J. Math. Phys.
5
,
548
(
1964
).
9.
A. M.
Dykhne
,
Zh. Eksp. Teor. Fiz.
59
,
110
(
1970
)
[
A. M.
Dykhne
,
Sov. Phys. JETP
32
,
63
(
1971
)].
10.
K.
Schulgasser
,
J. Math. Phys.
17
,
378
(
1976
).
11.
S.
Prager
,
J. Chem. Phys.
50
,
305
(
1969
).
12.
D. J.
Bergman
,
Phys. Rep. C
43
,
377
(
1978
).
13.
G. W.
Milton
,
J. Appl. Phys.
52
,
5294
(
1981
).
14.
P. B.
Corson
,
J. Appl. Phys.
45
,
3159
(
1974
).
15.
J. G.
Berryman
,
J. Appl. Phys.
57
,
2374
(
1985
).
16.
M.
Beran
,
Nuovo Cimento
38
,
771
(
1965
).
17.
G. W.
Milton
,
Phys. Rev. Lett.
46
,
542
(
1981
).
18.
S.
Torquato
and
G.
Stell
,
Lett. Appl. Eng. Sci.
23
,
375
(
1985
).
19.
J. M.
Ball
,
Arch. Ratl. Mech. Anal.
63
,
337
(
1977
).
20.
F.
Murat
,
Ann. Sc. Norm. Pisa
5
,
489
(
1978
).
21.
L. Tartar, in Nonlinear Analysis and Mechanics: Heriot Watt Symposium IV. Research Notes in Math. (Pitman, London, 1979), Vol. 39.
22.
K. A.
Lurie
and
A. V.
Cherkaev
,
Proc. R. Soc. Edin.
29A
,
71
(
1984
).
23.
K. A.
Lurie
and
A. V.
Cherkaev
,
Dokl. Akad. Nauka
259
,
328
(
1981
).
24.
G.
Birkhoff
,
Revista Univ. Tucuman, Argentine Republic
5
,
147
(
1946
).
25.
L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory (Saunders, Philadelphia, 1969).
26.
F. Murat and L. Tartar, in Les methodes de l’Homogeneisation: theorie et applications en physique, Coll. de la Dir. des Etudes et Recherches d’Electricite de France (Eyrolles, Paris, 1985), p. 319.
27.
R. V.
Kohn
and
G.
Strang
,
Comm. Pure Appl. Math.
39
,
113
(
1986
);
R. V.
Kohn
and
G.
Strang
,
39
,
139
(
1986
); ,
Commun. Pure Appl. Math.
R. V.
Kohn
and
G.
Strang
,
39
,
353
(
1986
).,
Commun. Pure Appl. Math.
28.
J. L. Armand, K. A. Lurie, and A. V. Cherkaev, in New Directions in Optimum Structural Design, edited by E. Atrek, R. H. Gallagher, K. M. Ragsdell, and O. C. Zienkiewicz (Wiley, New York, 1984).
29.
D. A. G.
Bruggeman
,
Ann. Phys.
5
,
636
(
1935
).
30.
G. W.
Milton
,
Comm. Math. Phys.
99
,
463
(
1985
).
31.
G. W. Milton, Ph.D. thesis, Cornell (1985).
32.
M.
Avellaneda
,
Comm. Pure Appl. Math.
40
,
527
(
1987
).
33.
K. A.
Lurie
and
A. V.
Cherkaev
,
Uspekhi Mekhaniki (Adv. Mech.)
9
,
3
(
1987
).
34.
G. W. Milton, in Advances in Multiphase Flow and Related Problems, edited by G. C. Papanicolaou (SIAM, Philadelphia, 1986), p. 136.
35.
W.
Brown
,
J. Chem. Phys.
23
,
1514
(
1955
).
36.
D. J. Bergman, in Homogenization and Effective Moduli of Materials and Media, edited by J. L. Ercksen, D. Kinderlehrer, R. R. Kohn, and J.‐L. Lions (Springer, New York, 1986), p. 27.
This content is only available via PDF.
You do not currently have access to this content.