We study third‐order upper and lower bounds on the shear modulus of a model composite made up of equisized, impenetrable spherical inclusions randomly distributed throughout a matrix phase. We determine greatly simplified expressions for the two key multidimensional cluster integrals (involving the three‐point distribution function for one of the phases) arising in these bounds. These expressions are obtained by expanding the orientation‐dependent terms in the integrand in spherical harmonics and employing the orthogonality property of this basis set. The resulting simplified integrals are in a form that makes them much easier to compute. The approach described here is quite general in the sense that it has application in cases where the spheres are permeable to one another (models of consolidated media such as sandstones and sintered materials) and to the determination of other bulk properties, such as the bulk modulus, thermal/electrical conductivity, and fluid permeability.

1.
G. K.
Batchelor
,
Annu. Rev. Fluid Mech.
6
,
227
(
1974
).
2.
D. K.
Hale
,
J. Mater. Sci.
11
,
2105
(
1976
).
3.
R. Landauer, in Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J. C. Garland and D. B. Tanner (AIP, New York, 1978).
4.
Z.
Hashin
,
J. Appl. Mech.
50
,
481
(
1983
).
5.
G. W.
Milton
,
Commun. Math. Phys.
99
,
463
(
1985
).
6.
S.
Torquato
,
J. Appl. Phys.
58
,
3790
(
1985
).
7.
S. Torquato, Rev. Chem. Eng. (in press). This review paper includes comparison of theoretical results to experimental data.
8.
S.
Torquato
and
G.
Stell
,
J. Chem. Phys.
77
,
2071
(
1982
).
9.
S.
Torquato
and
G.
Stell
,
J. Chem. Phys.
82
,
980
(
1985
).
10.
S.
Torquato
,
J. Stat. Phys.
45
,
843
(
1986
).
11.
These self‐consistent schemes are generally known as effective medium approximation with its many variants such as the coherent potential approximation, etc. For more details on them see Refs. 3 and 5 above. The name itself suggests that they mostly involve a mean‐field approximation, though (in the context of a microscopic Hamiltonian) there exists a good self‐consistent scheme to go beyond mean‐field effects, namely the traveling cluster approximation (TCA). For more details regarding the usage of TCA in the microscopic context, see Refs. 12 and 13 below.
12.
R.
Mills
and
P.
Ratanavararaksa
,
Phys. Rev. B
18
,
5291
(
1978
).
13.
Asok K.
Sen
,
R.
Mills
,
T.
Kaplan
, and
L. J.
Gray
,
Phys. Rev. B
30
,
5686
(
1984
).
14.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
11
,
127
(
1963
).
15.
J. J. McCoy, Recent Advances in Engineering Science (Gordon and Breach, New York, 1970), Vol. 5, pp. 235–254.
16.
G. W.
Milton
,
Phys. Rev. Lett.
46
,
542
(
1981
).
17.
G. W.
Milton
and
N.
Phan‐Thien
,
Proc. R. Soc. London Ser. A
380
,
305
(
1982
).
18.
S.
Torquato
,
G.
Stell
, and
J.
Beasley
,
Lett. Appl. Eng. Sci.
23
,
385
(
1985
).
19.
S.
Torquato
,
F.
Lado
, and
P.
Smith
,
J. Chem. Phys.
86
,
6388
(
1987
).
20.
F.
Lado
and
S.
Torquato
,
Phys. Rev. B
33
,
3370
(
1986
);
S.
Torquato
and
F.
Lado
,
Phys. Rev. B
33
,
6428
(
1986
).,
Phys. Rev. B
21.
S.
Torquato
and
J. D.
Beasley
,
Phys. Fluids
30
,
633
(
1987
).
22.
Note that in Refs. 8 and 9, Sn denotes the n‐point probability for the matrix. In the present work, Sn denotes the corresponding quantity for the particle phase.
23.
Note that here we have taken out the density factors explicitly instead of keeping them implicitly in the order of the diagram as in Ref. 9.
24.
J. A.
Barker
and
J. J.
Monaghan
,
J. Chem. Phys.
36
,
2564
(
1962
).
See also
D.
Henderson
,
J. Chem. Phys.
46
,
4306
(
1967
) ,
J. Chem. Phys.
and
A. D. J.
Haymet
,
S. A.
Rice
, and
W. G.
Madden
,
J. Chem. Phys.
74
,
3033
(
1981
) for similar applications.,
J. Chem. Phys.
25.
A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957), Chap. 4.
26.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, DC, 1964), Chap. 11.
27.
S.
Torquato
,
J. Chem. Phys.
83
,
4776
(
1985
).
28.
Ref. 26, p. 440.
29.
Ref. 26, Chap. 22.
30.
See, for example, E. Jahnke and F. Emde, Tables of Functions, 4th ed. (Dover, New York, 1945), Chap. VII.
This content is only available via PDF.
You do not currently have access to this content.