The oxidation of silicon in dry oxgen is characterized by an initial stage where the growth rate is larger than predicted by the Deal–Grove linear‐parabolic general oxidation relationship. This growth‐rate enhancement has been studied in the 800–1000 °C range by using insitu ellipsometry, and its dependence on the oxidation parameters has been analyzed. In this paper, the rate enhancement in the thin‐film regime is analyzed as a function of oxidation time and is found to fit two terms which decay exponentially with time. These results yield an analytical relationship between the oxide thickness and the oxidation time that describes SiO2 growth beyond the native oxide. The nature of the additional oxidation mechanisms and their decay with time is discussed.

1.
B. E.
Deal
and
A. S.
Grove
,
J. Appl. Phys.
36
,
3770
(
1965
).
2.
H. Z.
Massoud
,
J. D.
Plummer
, and
E. A.
Irene
,
J. Electrochem. Soc.
132
,
2685
(
1985
).
3.
H. Z.
Massoud
,
J. D.
Plummer
, and
E. A.
Irene
,
J. Electrochem. Soc.
132
,
2693
(
1985
).
4.
Y. J.
van der Meulen
and
N. C.
Hien
,
J. Opt. Soc. Am.
64
,
804
(
1974
).
5.
P. S.
Hauge
and
F. H.
Dill
,
IBM J. Res. Dev.
17
,
472
(
1972
).
6.
W.
Kern
and
D. A.
Puotinen
,
RCA Rev.
31
,
187
(
1970
).
7.
H. Z. Massoud, Ph.D. dissertation, Stanford Electronics Labs, Tech. Rep. No. G502‐1, Stanford University, Stanford, CA, 1983.
8.
H. Z.
Massoud
,
J. D.
Plummer
, and
E. A.
Irene
,
J. Electrochem. Soc.
132
,
1745
(
1985
).
9.
G. Dahlquist and A. Björck, Numerical Methods (Prentice Hall, Englewood Cliffs, NJ, 1974).
10.
R.
Ghez
and
Y. J.
van der Meulen
,
J. Electrochem. Soc.
119
,
1100
(
1972
).
11.
Y. J.
van der Meulen
,
J. Electrochem. Soc.
119
,
530
(
1972
).
12.
C.‐J.
Han
and
C. R.
Helms
,
J. Electrochem. Soc.
134
,
504
(
1987
).
13.
C.‐J. Han, Ph.D. dissertation, Tech. Rep. No. J‐307‐1, Stanford Electronics Labs, Stanford University, Stanford, CA, 1986.
14.
J. W. Rouse, C. R. Helms, and C.‐J. Han, in Computer Aided Design of Integrated Circuits Fabrication Processes for VLSI Devices, edited by J. D. Plummer (Stanford Electronics Labs, Stanford University, Stanford, CA 1982).
15.
J. A.
Costello
and
R. E.
Tressler
,
J. Electrochem. Soc.
131
,
1944
(
1984
).
16.
E.
Rosencher
,
A.
Straboni
,
S.
Rigo
, and
G.
Amsel
,
Appl. Phys. Lett.
34
,
254
(
1979
).
17.
F.
Rochet
,
B.
Agius
, and
S.
Rigo
,
J. Electrochem. Soc.
131
,
914
(
1984
).
18.
V. A.
Arslambekov
and
A.
Safarov
,
Mikroelektronika
6
,
75
(
1977
).
19.
C.‐J.
Han
and
C. R.
Helms
,
J. Electrochem. Soc.
134
,
1297
(
1987
).
20.
See for example, J. D. Plummer, in Semiconductor Silicon 1981, Proceedings of the 4th International Symposium on Silicon Materials Science and Technology, edited by H. Huff and R. J. Kriegler (The Electrochemical Society, Pennington, NJ, 1981), Vol. 81‐5;
R. B.
Fair
,
J. Electrochem. Soc.
128
,
1360
(
1981
).
21.
W. A.
Tiller
,
J. Electrochem. Soc.
127
,
625
(
1980
).
22.
W. A.
Tiller
,
J. Electrochem. Soc.
130
,
501
(
1983
).
23.
A.
Fargeix
,
G.
Ghibaudo
, and
G.
Kamarinos
,
J. Appl. Phys.
54
,
2878
(
1983
).
24.
E. A.
Irene
,
J. Appl. Phys.
54
,
5416
(
1983
).
25.
A.
Fargeix
and
G.
Ghibaudo
,
J. Appl. Phys.
54
,
7153
(
1983
).
26.
A.
Fargeix
and
G.
Ghibaudo
,
J. Appl. Phys.
56
,
589
(
1984
).
27.
R. H.
Doremus
,
Thin Solid Films
122
,
191
(
1984
).
28.
G.
Charitat
and
A.
Martinez
,
J. Appl. Phys.
55
,
909
(
1984
).
29.
E. A.
Irene
,
Philos. Mag. B
55
,
131
(
1987
).
30.
G.
Ghibaudo
,
Philos. Mag. B
55
,
147
(
1987
).
31.
B.
Leroy
,
Philos. Mag. B
55
,
159
(
1987
).
32.
A.
Reisman
,
E. H.
Nicollian
,
C. K.
Williams
, and
C.
Merz
,
J. Electron. Mater.
16
,
45
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.