We evaluate third‐order bounds due to Milton and Phan‐Thien on the effective shear modulus Ge of a random dispersion of identical impenetrable spheres in a matrix up to sphere‐volume fractions near the random close‐packing value. The third‐order bounds, which incorporate two parameters, ζ2 and η2, that depend upon the three‐point probability function of the composite medium, are shown to significantly improve upon the second‐order Hashin–Shtrikman (or, more general, Walpole) bounds which do not utilize this information, for a wide range of volume fraction and phase property values. The physical significance of the microstructural parameter η2 for general microstructures is briefly discussed. The third‐order bounds on Ge are found to be sharp enough to yield good estimates of the effective shear modulus for a wide range of sphere‐volume fractions, even when the individual shear moduli differ by as much as two orders of magnitude. Moreover, when the spheres are highly rigid relative to the matrix, the third‐order lower bound on the effective property provides a useful estimate of it. The third‐order bounds are compared with experimental data for the shear modulus of composites composed of glass spheres in an epoxy matrix and the shear viscosity of suspensions of bituminous particles in water. In general, the third‐order lower bound (rather than the upper bound) on Ge tends to provide a good estimate of the data.

1.
A. K.
Sen
,
F.
Lado
, and
S.
Torquato
,
J. Appl. Phys.
62
,
3503
(
1987
).
2.
S.
Torquato
and
F.
Lado
,
Phys. Rev. B
33
,
6428
(
1986
).
3.
J. J. McCoy, Recent Advances in Engineering Sciences (Gordon and Breach, New York, 1970), Vol. 5, pp. 235–254.
4.
G. W.
Milton
and
N.
Phan‐Thien
,
Proc. R. Soc. Lond. A
380
,
305
(
1982
).
5.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
11
,
127
(
1963
).
6.
L. J.
Walpole
,
J. Mech. Phys. Solids
14
,
151
(
1966
).
7.
J. C.
Smith
,
J. Res. NBS
80A
,
45
(
1976
).
8.
H.
Eilers
,
Kolloid Z.
97
,
313
(
1941
).
9.
G. W.
Milton
,
Phys. Rev. Lett.
46
,
542
(
1981
).
10.
Note that the definition of S3, in Refs. 1 and 2 are different. S3 in Ref. 2 refers to the three‐point function for the matrix phase, but S3 in Ref. 1 and in the present work refers to the three‐point function for the particulate phase. This change makes the quantity K in Eq. (8) of Ref. 2 equal to the quantity I[Ŝ3] used in the present work.
11.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 1976).
12.
L.
Verlet
and
J. J.
Weis
,
Phys. Rev. A
5
,
939
(
1972
).
13.
J. G.
Berryman
,
Phys. Rev. A
27
,
1053
(
1983
).
14.
J. D.
Beasley
and
S.
Torquato
,
J. Appl. Phys.
60
,
3576
(
1986
).
15.
G. W. Milton, in Physics and Chemistry of Porous Media, edited by D. L. Johnson and P. N. Sen (American Institute of Physics, New York, 1984).
16.
D. A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
636
(
1935
);
See also
R.
Landauer
,
J. Appl. Phys.
23
,
779
(
1952
);
R.
Hill
,
J. Mech. Phys. Solids
13
,
213
(
1965
);
and
B.
Budiansky
,
J. Mech. Phys. Solids
13
,
223
(
1965
).,
J. Mech. Phys. Solids
17.
S.
Torquato
,
G.
Stell
, and
J.
Beasley
,
Lett. Appl. Eng. Sci.
23
,
385
(
1985
).
18.
M. N.
Miller
,
J. Math. Phys.
10
,
1988
(
1969
).
19.
S. Torquato and F. Lado (unpublished).
20.
S.
Torquato
,
J. Appl. Phys.
58
,
3790
(
1985
).
21.
A.
Coniglio
,
V.
DeAngelis
, and
A.
Forlani
,
J. Phys. A
10
,
1123
(
1977
).
22.
The scaled characteristic length of the sample is defined as the dimensional characteristic length of the sample divided by the length scale of microscopic inhomogeneity (in this case, the diameter of a spherical inclusion).
23.
A.
Einstein
,
Ann. Phys.
19
,
289
(
1906
). English translation in Investigations on the Theory of Brownian Motion (Dover, New York, 1956).
24.
H. S.
Chen
and
A.
Acrivos
,
Int. J. Solids Struct.
14
,
349
(
1978
).
25.
S.
Torquato
,
F.
Lado
, and
P. A.
Smith
,
J. Chem. Phys.
86
,
6388
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.