This paper presents a simple method for accurately calculating quantum mechanical transmission probability and current across arbitrary potential barriers by using the multistep potential approximation. This method is applicable to various potential barriers and wells, including continuous variations of potential energy and electron effective mass. Various potential barrier structures and a hot‐electron transistor are analyzed to show the feasibility of this method.
REFERENCES
1.
T. C. L. G.
Sollner
, W. D.
Goodhue
, P. E.
Tannenwald
, C. D.
Parker
, and D. D.
Peck
, Appl. Phys. Lett.
43
, 588
(1983
).2.
3.
N.
Yokoyama
, K.
Imamura
, S.
Muto
, S.
Hiyamizu
, and H.
Nishi
, Jpn. J. Appl. Phys.
24
, L853
(1985
).4.
A. Messiah, Quantum Mechanics (North‐Holland, Amsterdam, 1961).
5.
6.
7.
D. N.
Christodoulides
, A. G.
Andreou
, R. I.
Joseph
, and C. R.
Westgate
, Solid‐State Electron.
28
, 821
(1985
).8.
9.
10.
D. S. Jones, The Theory of Electromagnetism (Pergamon, Oxford, 1964), Sec. 6.20.
11.
12.
13.
C. B. Duke, Tunneling in Solids (Academic, New York, 1969).
14.
15.
H. C. Casey and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part A, Chap. 4.
16.
T. W.
Hickmott
, P. M.
Solomon
, R.
Fischer
, and H.
Morkoç
, Appl. Phys. Lett.
44
, 90
(1984
).17.
18.
19.
A. F. J.
Levi
, J. R.
Hayes
, P. M.
Platzman
, and W.
Wiegmann
, Phys. Rev. Lett.
55
, 2071
(1985
).20.
M.
Heiblum
, E.
Calleja
, I. M.
Anderson
, W. P.
Dumke
, C. M.
Knoedler
, and L.
Osterling
, Phys. Rev. Lett.
56
, 2854
(1986
).
This content is only available via PDF.
© 1987 American Institute of Physics.
1987
American Institute of Physics
You do not currently have access to this content.