Hashin–Shtrikman bounds are given for the effective bulk and shear moduli of randomly oriented aggregates of materials with trigonal (crystal classes 3, 3̄) and tetragonal (classes 4, 4̄, 4m) symmetry. The Hashin–Shtrikman bounds are narrower than the widely used Voigt and Reuss bounds by factors of 2–13. This study completes the development of explicit Hashin–Shtrikman bounds for polycrystals of all crystal symmetries and classes, except triclinic.
REFERENCES
1.
J. P.
Watt
, G. F.
Davies
, and R. J.
O’Connell
, Rev. Geophys. Space Phys.
14
, 541
(1976
).2.
L. J. Walpole, in Advances in Applied Mechanics, edited by C.‐S. Yih (Academic, New York, 1981), Vol. 21, p. 169.
3.
J. R. Willis, in Advances in Applied Mechanics, edited by C.‐S. Yih (Academic, New York, 1981), Vol. 21, p. 1.
4.
Z.
Hashin
, J. Appl. Mech., Trans. Am. Soc. Mech. Eng.
50
, 481
(1983
).5.
W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).
6.
7.
8.
9.
10.
11.
12.
13.
14.
J. F. Nye, Physical Properties of Crystals (Oxford University, New York, 1957).
15.
16.
R. S.
Krishnan
, V.
Radha
, and E. S. R.
Gopal
, J. Phys. D
4
, 171
(1971
).17.
18.
H.
Küppers
and H.
Siegert
, Acta Crystallogr. Sect. A
26
, 401
(1970
).
This content is only available via PDF.
© 1986 American Institute of Physics.
1986
American Institute of Physics
You do not currently have access to this content.