A combined cross‐sectional and plan‐view transmission electron microscope study of residual defects in 110‐keV, 5×1015/cm2 BF+2‐ implanted (001)Si has been carried out. Complete amorphization of the surface layer to a depth of about 1400 Å from the surface was found in as‐implanted samples. The general trends of the amorphous/crystalline (a/c) regrowth were found to be similar in 550–900 °C annealed samples. ‘‘Paired’’ dislocations were observed in the first ∼600 Å of regrown layers. A high density of twins was found subsequently as the a/c interface advanced to the surface. Small defect clusters, irregular dislocations, equiaxial loops, and rodlike defects were observed to distribute in bands underneath the original a/c interface. The regrown layers were found to be almost dislocation‐ and twin‐free in 1000–1100 °C annealed specimens. The regrown layer, however, contained a high density of fluorine bubbles. The bubbles were concentrated near the orignal a/c interface and the surface. Irregular dislocation networks were found to develop near the orignal a/c interface. The origins of residual defects and their possible influences on device applications are discussed.

1.
G.
Ryding
and
A. B.
Wittkower
,
IEEE Trans. Manuf. Technol.
MFT‐4
,
21
(
1975
).
2.
R. G.
Wilson
,
J. Appl. Phys.
54
,
6879
(
1983
).
3.
D. G.
Beanland
,
Solid State Electron.
21
,
537
(
1978
).
4.
B. A.
Maclver
and
E.
Greenstein
,
J. Electrochem. Soc.
124
,
273
(
1977
).
5.
S. Prussin, in Ion Implantation in Semiconductors, edited by S. Namba (Plenum, New York, 1975), p. 449.
6.
L. J.
Chen
and
I. W.
Wu
,
J. Appl. Phys.
52
,
3310
(
1981
).
7.
L. J.
Chen
,
Y. J.
Wu
, and
I. W.
Wu
,
J. Appl. Phys.
52
,
3520
(
1981
).
8.
I. W.
Wu
and
L. J.
Chen
,
J. Appl. Phys.
58
,
3032
(
1985
).
9.
R. B. Marcus and T. T. Sheng, Transmission Electron Microscopy of Silicon VLSI Circuits and Structures (Wiley, New York, 1983).
10.
F.
Föil
,
F. S.
Ho
, and
K. N.
Tu
,
J. Appl. Phys.
52
,
250
(
1981
).
11.
C.
Carter
,
W.
Maszara
,
D. K.
Sadana
,
G. A.
Rozgonyi
,
J.
Liu
, and
J.
Wortman
,
Appl. Phys. Lett.
44
,
459
(
1984
).
12.
T.
Sands
,
J.
Washburn
,
R.
Gronsky
,
W.
Maszara
,
D. K.
Sadana
, and
G. A.
Rozgonyi
,
Appl. Phys. Lett.
45
,
982
(
1984
).
13.
T. E.
Seidel
,
R.
Knoell
,
G.
Poli
,
B.
Schwartz
,
F. A.
Stevie
, and
P.
Chu
,
J. Appl. Phys.
58
,
683
(
1985
).
14.
G.
Fuse
,
T.
Hirao
,
K.
Inoue
,
S.
Takayanagi
, and
Y.
Yaegashi
,
J. Appl. Phys.
53
,
3650
(
1982
).
15.
T.
Ohzone
,
H.
Shimura
,
K.
Tsuji
, and
T.
Hirao
,
IEEE Trans. Electron Devices
ED‐27
,
1789
(
1980
).
16.
T. T.
Sheng
and
C. C.
Chang
,
IEEE Trans. Electron Devices
ED‐23
,
531
(
1976
).
17.
G. Thomas and M. J. Goringe, Transmission Electron Microscopy of Materials (Wiley, New York, 1979).
18.
L. J.
Chen
and
A. J.
Ardell
,
Scr. Metall.
10
,
1047
(
1976
).
19.
L. J.
Chen
and
A. J.
Ardell
,
Scr. Metall.
11
,
871
(
1977
).
20.
C. W.
Nieh
and
L. J.
Chen
,
Appl. Phys. Lett.
48
,
1528
(
1986
).
21.
M.
Wittmer
,
J.
Roth
,
P.
Resvez
, and
J. W.
Mayer
,
J. Appl. Phys.
49
,
5207
(
1978
).
22.
D. R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (Technical Information Center, ERDA, Oak Ridge, 1976).
23.
I.
Suni
,
U.
Shreter
,
M. A.
Nicolet
, and
J. E.
Baker
,
J. Appl. Phys.
56
,
273
(
1984
).
24.
S. K. Ghandhi, VLSI Fabrication Principles (Wiley, New York, 1983), p. 69.
25.
R.
Drosd
and
J.
Washburn
,
J. Appl. Phys.
51
,
4106
(
1980
).
26.
R.
Drosd
and
J.
Washburn
,
J. Appl. Phys.
53
,
397
(
1982
).
27.
A.
Kamgar
,
W.
Fichtner
,
T. T.
Sheng
, and
D. C.
Jocobson
,
Appl. Phys. Lett.
45
,
754
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.